Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(8): e0136494, 2015.
Article in English | MEDLINE | ID: mdl-26308619

ABSTRACT

The development of social behavior is strongly influenced by the serotonin system. Serotonin 2c receptor (5-HT2cR) is particularly interesting in this context considering that pharmacological modulation of 5-HT2cR activity alters social interaction in adult rodents. However, the role of 5-HT2cR in the development of social behavior is unexplored. Here we address this using Htr2c knockout mice, which lack 5-HT2cR. We found that these animals exhibit social behavior deficits as adults but not as juveniles. Moreover, we found that the age of onset of these deficits displays similar timing as the onset of susceptibility to spontaneous death and audiogenic-seizures, consistent with the hypothesis that imbalanced excitation and inhibition (E/I) may contribute to social behavioral deficits. Given that autism spectrum disorder (ASD) features social behavioral deficits and is often co-morbid with epilepsy, and given that 5-HT2cR physically interacts with Pten, we tested whether a second site mutation in the ASD risk gene Pten can modify these phenotypes. The age of spontaneous death is accelerated in mice double mutant for Pten and Htr2c relative to single mutants. We hypothesized that pharmacological antagonism of 5-HT2cR activity in adult animals, which does not cause seizures, might modify social behavioral deficits in Pten haploinsufficient mice. SB 242084, a 5-HT2cR selective antagonist, can reverse the social behavior deficits observed in Pten haploinsufficient mice. Together, these results elucidate a role of 5-HT2cR in the modulation of social behavior and seizure susceptibility in the context of normal development and Pten haploinsufficiency.


Subject(s)
Behavior, Animal , Brain/pathology , Disease Susceptibility , Receptor, Serotonin, 5-HT2C/physiology , Seizures/etiology , Seizures/pathology , Social Behavior , Animals , Brain/metabolism , Female , Haploinsufficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Serotonin
2.
Proc Natl Acad Sci U S A ; 106(6): 1989-94, 2009 Feb 10.
Article in English | MEDLINE | ID: mdl-19208814

ABSTRACT

Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders that share deficits in sociability, communication, and restrictive and repetitive interests. ASD is likely polygenic in origin in most cases, but we presently lack an understanding of the relationships between ASD susceptibility genes and the neurobiological and behavioral phenotypes of ASD. Two genes that have been implicated as conferring susceptibility to ASD are PTEN and Serotonin transporter (SLC6A4). The PI3K and serotonin pathways, in which these genes respectively act, are both potential biomarkers for ASD diagnosis and treatment. Biochemical evidence exists for an interaction between these pathways; however, the relevance of this for the pathogenesis of ASD is unclear. We find that Pten haploinsufficient (Pten(+/-)) mice are macrocephalic, and this phenotype is exacerbated in Pten(+/-); Slc6a4(+/-) mice. Furthermore, female Pten(+/-) mice are impaired in social approach behavior, a phenotype that is exacerbated in female Pten(+/-); Slc6a4(+/-) mice. While increased brain size correlates with decreased sociability across these genotypes in females, within each genotype increased brain size correlates with increased sociability, suggesting that epigenetic influences interact with genetic factors in influencing the phenotype. These findings provide insight into an interaction between two ASD candidate genes during brain development and point toward the use of compound mutant mice to validate biomarkers for ASD against biological and behavioral phenotypes.


Subject(s)
Autistic Disorder/genetics , Brain , Haplotypes/genetics , PTEN Phosphohydrolase/physiology , Serotonin Plasma Membrane Transport Proteins/physiology , Social Behavior , Animals , Female , Genetic Predisposition to Disease , Genotype , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Organ Size , PTEN Phosphohydrolase/genetics , Phenotype , Serotonin Plasma Membrane Transport Proteins/genetics , Sex Factors
3.
Front Behav Neurosci ; 3: 48, 2009.
Article in English | MEDLINE | ID: mdl-20198104

ABSTRACT

Altered sociability is a core feature of a variety of human neurological disorders, including autism. Social behaviors may be tested in animal models, such as mice, to study the biological basis of sociability and how this is altered in neurodevelopmental disorders. A quantifiable social behavior frequently used to assess sociability in the mouse is the tendency to approach and interact with an unfamiliar mouse. Here we present a novel computer-assisted method for scoring social approach behavior in mice using a three-chambered apparatus and freely available software. We find consistent results between data scored using the computer-assisted method and a human observer, making computerized assessment a reliable, low cost, high-throughput method for testing sociability.

SELECTION OF CITATIONS
SEARCH DETAIL
...