Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408429

ABSTRACT

We show new approaches to developing acoustic liquid sensors based on phononic crystals. The proposed phononic crystal integrates fluidic elements. A solid block with periodic cylindrical holes contains a defect-a liquid-filled cylindrical cavity. We pay attention to acoustic excitation and the readout of the axisymmetric cylindrical resonator eigenmode of the liquid-filled defect in the middle of the phononic crystal structure. This mode solves the challenge of mechanical energy losses due to liquid viscosity. We also analyze the coupling effects between oscillations of liquid and solid systems and consider coupling issues between piezoelectric transducers and the liquid-filled cavity resonator. The numerical simulation of the propagation of acoustic waves through the phononic crystal sensor was carried out in COMSOL Multiphysics Software. The phononic crystal was made of stainless steel with mechanically drilled holes and was fabricated for experimental verification. We show that a tuning of the solid-liquid vibrational modes coupling is the key to an enhanced level of sensitivity to liquid properties. Besides (homogeneous) water-propanol mixtures, experimental studies were carried out on (disperse) water-fuel emulsions.

2.
Sensors (Basel) ; 19(17)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31470651

ABSTRACT

Periodic elastic composite structures attract great attention. They offer the ability to design artificial properties to advance the control over the propagation of elastic/acoustic waves. In previous work, we drew attention to composite periodic structures comprising liquids. It was shown that the transmission spectrum of the structure, specifically a well-isolated peak, follows the material properties of liquid constituent in a distinct manner. This idea was realized in several liquid sensor concepts that launched the field of phononic crystal liquid sensors. In this work we introduce a novel concept-narrow band solid-liquid composite arrangements. We demonstrate two different concepts to design narrow band structures, and show the results of theoretical studies and results of experimental investigations that confirm the theoretical predictions. This work extends prior studies in the field of phononic crystal liquid sensors with novel concepts and results that have a high potential in a field of volumetric liquid properties evaluation.

SELECTION OF CITATIONS
SEARCH DETAIL
...