Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37420642

ABSTRACT

Methods for detecting emotions that employ many modalities at the same time have been found to be more accurate and resilient than those that rely on a single sense. This is due to the fact that sentiments may be conveyed in a wide range of modalities, each of which offers a different and complementary window into the thoughts and emotions of the speaker. In this way, a more complete picture of a person's emotional state may emerge through the fusion and analysis of data from several modalities. The research suggests a new attention-based approach to multimodal emotion recognition. This technique integrates facial and speech features that have been extracted by independent encoders in order to pick the aspects that are the most informative. It increases the system's accuracy by processing speech and facial features of various sizes and focuses on the most useful bits of input. A more comprehensive representation of facial expressions is extracted by the use of both low- and high-level facial features. These modalities are combined using a fusion network to create a multimodal feature vector which is then fed to a classification layer for emotion recognition. The developed system is evaluated on two datasets, IEMOCAP and CMU-MOSEI, and shows superior performance compared to existing models, achieving a weighted accuracy WA of 74.6% and an F1 score of 66.1% on the IEMOCAP dataset and a WA of 80.7% and F1 score of 73.7% on the CMU-MOSEI dataset.


Subject(s)
Emotions , Speech , Humans , Recognition, Psychology , Facial Expression
2.
Sensors (Basel) ; 23(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37299734

ABSTRACT

This study describes an applied and enhanced real-time vehicle-counting system that is an integral part of intelligent transportation systems. The primary objective of this study was to develop an accurate and reliable real-time system for vehicle counting to mitigate traffic congestion in a designated area. The proposed system can identify and track objects inside the region of interest and count detected vehicles. To enhance the accuracy of the system, we used the You Only Look Once version 5 (YOLOv5) model for vehicle identification owing to its high performance and short computing time. Vehicle tracking and the number of vehicles acquired used the DeepSort algorithm with the Kalman filter and Mahalanobis distance as the main components of the algorithm and the proposed simulated loop technique, respectively. Empirical results were obtained using video images taken from a closed-circuit television (CCTV) camera on Tashkent roads and show that the counting system can produce 98.1% accuracy in 0.2408 s.


Subject(s)
Algorithms , Computer Systems , Intelligence
3.
Sensors (Basel) ; 22(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36365921

ABSTRACT

E-commerce systems experience poor quality of performance when the number of records in the customer database increases due to the gradual growth of customers and products. Applying implicit hidden features into the recommender system (RS) plays an important role in enhancing its performance due to the original dataset's sparseness. In particular, we can comprehend the relationship between products and customers by analyzing the hierarchically expressed hidden implicit features of them. Furthermore, the effectiveness of rating prediction and system customization increases when the customer-added tag information is combined with hierarchically structured hidden implicit features. For these reasons, we concentrate on early grouping of comparable customers using the clustering technique as a first step, and then, we further enhance the efficacy of recommendations by obtaining implicit hidden features and combining them via customer's tag information, which regularizes the deep-factorization procedure. The idea behind the proposed method was to cluster customers early via a customer rating matrix and deeply factorize a basic WNMF (weighted nonnegative matrix factorization) model to generate customers preference's hierarchically structured hidden implicit features and product characteristics in each cluster, which reveals a deep relationship between them and regularizes the prediction procedure via an auxiliary parameter (tag information). The testimonies and empirical findings supported the viability of the proposed approach. Especially, MAE of the rating prediction was 0.8011 with 60% training dataset size, while the error rate was equal to 0.7965 with 80% training dataset size. Moreover, MAE rates were 0.8781 and 0.9046 in new 50 and 100 customer cold-start scenarios, respectively. The proposed model outperformed other baseline models that independently employed the major properties of customers, products, or tags in the prediction process.


Subject(s)
Algorithms , Commerce , Cluster Analysis , Databases, Factual
4.
Sensors (Basel) ; 22(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36236403

ABSTRACT

Early fire detection and notification techniques provide fire prevention and safety information to blind and visually impaired (BVI) people within a short period of time in emergency situations when fires occur in indoor environments. Given its direct impact on human safety and the environment, fire detection is a difficult but crucial problem. To prevent injuries and property damage, advanced technology requires appropriate methods for detecting fires as quickly as possible. In this study, to reduce the loss of human lives and property damage, we introduce the development of the vision-based early flame recognition and notification approach using artificial intelligence for assisting BVI people. The proposed fire alarm control system for indoor buildings can provide accurate information on fire scenes. In our proposed method, all the processes performed manually were automated, and the performance efficiency and quality of fire classification were improved. To perform real-time monitoring and enhance the detection accuracy of indoor fire disasters, the proposed system uses the YOLOv5m model, which is an updated version of the traditional YOLOv5. The experimental results show that the proposed system successfully detected and notified the occurrence of catastrophic fires with high speed and accuracy at any time of day or night, regardless of the shape or size of the fire. Finally, we compared the competitiveness level of our method with that of other conventional fire-detection methods to confirm the seamless classification results achieved using performance evaluation matrices.


Subject(s)
Artificial Intelligence , Computer Systems , Humans , Technology
5.
Sensors (Basel) ; 21(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34640842

ABSTRACT

Currently, sensor-based systems for fire detection are widely used worldwide. Further research has shown that camera-based fire detection systems achieve much better results than sensor-based methods. In this study, we present a method for real-time high-speed fire detection using deep learning. A new special convolutional neural network was developed to detect fire regions using the existing YOLOv3 algorithm. Due to the fact that our real-time fire detector cameras were built on a Banana Pi M3 board, we adapted the YOLOv3 network to the board level. Firstly, we tested the latest versions of YOLO algorithms to select the appropriate algorithm and used it in our study for fire detection. The default versions of the YOLO approach have very low accuracy after training and testing in fire detection cases. We selected the YOLOv3 network to improve and use it for the successful detection and warning of fire disasters. By modifying the algorithm, we recorded the results of a rapid and high-precision detection of fire, during both day and night, irrespective of the shape and size. Another advantage is that the algorithm is capable of detecting fires that are 1 m long and 0.3 m wide at a distance of 50 m. Experimental results showed that the proposed method successfully detected fire candidate areas and achieved a seamless classification performance compared to other conventional fire detection frameworks.


Subject(s)
Fires , Neural Networks, Computer , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...