Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37887962

ABSTRACT

The acquisition of reliable knowledge about the mechanism of short laser pulse interactions with semiconductor materials is an important step for high-tech technologies towards the development of new electronic devices, the functionalization of material surfaces with predesigned optical properties, and the manufacturing of nanorobots (such as nanoparticles) for bio-medical applications. The laser-induced nanostructuring of semiconductors, however, is a complex phenomenon with several interplaying processes occurring on a wide spatial and temporal scale. In this work, we apply the atomistic-continuum approach for modeling the interaction of an fs-laser pulse with a semiconductor target, using monolithic crystalline silicon (c-Si) and porous silicon (Si). This model addresses the kinetics of non-equilibrium laser-induced phase transitions with atomic resolution via molecular dynamics, whereas the effect of the laser-generated free carriers (electron-hole pairs) is accounted for via the dynamics of their density and temperature. The combined model was applied to study the microscopic mechanism of phase transitions during the laser-induced melting and ablation of monolithic crystalline (c-Si) and porous Si targets in a vacuum. The melting thresholds for the monolithic and porous targets were found to be 0.32 J/cm2 and 0.29 J/cm2, respectively. The limited heat conduction mechanism and the absence of internal stress accumulation were found to be involved in the processes responsible for the lowering of the melting threshold in the porous target. The results of this modeling were validated by comparing the melting thresholds obtained in the simulations to the experimental values. A difference in the mechanisms of ablation of the c-Si and porous Si targets was considered. Based on the simulation results, a prediction regarding the mechanism of the laser-assisted production of Si nanoparticles with the desired properties is drawn.

2.
Int J Mol Sci ; 24(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37833909

ABSTRACT

The production of non-toxic and homogeneous colloidal solutions of nanoparticles (NPs) for biomedical applications is of extreme importance nowadays. Among the various methods for generation of NPs, pulsed laser ablation in liquids (PLAL) has proven itself as a powerful and efficient tool in biomedical fields, allowing chemically pure silicon nanoparticles to be obtained. For example, laser-synthesized silicon nanoparticles (Si NPs) are widely used as contrast agents for bio visualization, as effective sensitizers of radiofrequency hyperthermia for cancer theranostics, in photodynamic therapy, as carriers of therapeutic radionuclides in nuclear nanomedicine, etc. Due to a number of complex and interrelated processes involved in the laser ablation phenomenon, however, the final characteristics of the resulting particles are difficult to control, and the obtained colloidal solutions frequently have broad and multimodal size distribution. Therefore, the subsequent fragmentation of the obtained NPs in the colloidal solutions due to pulsed laser irradiation can be utilized. The resulting NPs' characteristics, however, depend on the parameters of laser irradiation as well as on the irradiated material and surrounding media properties. Thus, reliable knowledge of the mechanism of NP fragmentation is necessary for generation of a colloidal solution with NPs of predesigned properties. To investigate the mechanism of a laser-assisted NP fragmentation process, in this work, we perform a large-scale molecular dynamics (MD) modeling of FS laser interaction with colloidal solution of Si NPs. The obtained NPs are then characterized by their shape and morphological properties. The corresponding conclusion about the relative input of the properties of different laser-induced processes and materials to the mechanism of NP generation is drawn.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Silicon/chemistry , Molecular Dynamics Simulation , Porosity , Nanoparticles/chemistry , Lasers
SELECTION OF CITATIONS
SEARCH DETAIL
...