Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Plants (Basel) ; 12(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36840205

ABSTRACT

Salinity negatively affects agricultural production by reducing crop growth and yield. Botanical biostimulants can be used as innovative and sustainable tools to cope with abiotic stress. In this study, salicylic acid (SA) (25 µM) and willow leaf (WL) (0.1 and 0.2%) and bark (WB) (0.1 and 0.2%) extracts were applied as plant-based biostimulants to hydroponically grown maize in the absence and presence of salinity stress (60 mM NaCl). The hormone-like activity and mineral composition of willow extracts were analyzed, and the effects of willow extracts on growth parameters, chlorophyll content, antioxidative enzyme activities, protein levels and mineral nutrient concentrations of maize plants were measured. Within the tested biostimulant applications, 0.2% WB, 0.1% WL and 0.2% WL gave the most promising results, considering the stress alleviating effects. The shoot biomass was increased up to 50% with 0.1% WL treatment and Na+ uptake was reduced with biostimulant applications under saline conditions. Under stress, the protein concentrations of maize leaves were enhanced by 50% and 80% with high doses of WB and WL applications, respectively. Results indicate that willow tree prunings can be valuable bio-economy resources, and aqueous extracts prepared from their leaves and barks can be used as effective and eco-friendly biostimulants.

3.
J Agric Food Chem ; 61(35): 8364-72, 2013 Sep 04.
Article in English | MEDLINE | ID: mdl-23882996

ABSTRACT

Glyphosate drift to nontarget crops causes growth aberrations and yield losses. This herbicide can also interact with divalent nutrients and form poorly soluble complexes. The possibility of using nickel (Ni), an essential divalent metal, for alleviating glyphosate drift damage to wheat was investigated in this study. Effects of Ni applications on various growth parameters, seed yield, and quality of durum wheat ( Triticum durum ) treated with sublethal glyphosate at different developmental stages were investigated in greenhouse experiments. Nickel concentrations of various plant parts and glyphosate-induced shikimate accumulation were measured. Foliar but not soil Ni applications significantly reduced glyphosate injuries including yield losses, stunting, and excessive tillering. Both shoot and grain Ni concentrations were enhanced by foliar Ni treatment. Seed germination and seedling vigor were impaired by glyphosate and improved by foliar Ni application to parental plants. Foliar Ni application appears to have a great potential to ameliorate glyphosate drift injury to wheat.


Subject(s)
Glycine/analogs & derivatives , Herbicides/adverse effects , Nickel/administration & dosage , Seeds/drug effects , Triticum/drug effects , Glycine/adverse effects , Glycine/antagonists & inhibitors , Nickel/analysis , Plant Leaves/drug effects , Seeds/chemistry , Seeds/metabolism , Shikimic Acid/metabolism , Triticum/growth & development , Triticum/metabolism , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...