Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(16): 10920-10929, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577427

ABSTRACT

The integration of metal oxides onto two-dimensional layered siloxene has proven to be an effective strategy for expanding potential applications across diverse fields. Herein, we present the synthesis and detailed characterization of zinc oxide (ZnO) nanorods deposited on siloxene nanosheets using the wet chemical precipitation method without the need of alkali. The presence of ZnO nanorods was confirmed through electron microscopy analyses. X-ray diffraction analysis further verified the presence of characteristic peaks of ZnO in the hexagonal wurtzite crystal structure. Dielectric measurements demonstrated the moderated stability of interfacial polarization in siloxene nanosheets doped with zinc oxide (SX-ZnO) over a broad frequency spectrum, coupled with minimal electrical loss values under 0.4 within the 100 Hz to 1 MHz frequency range. In addition, the ferroelectric study of SiNSs-ZnO composites revealed a slim hysteresis loop with maximum polarization and remnant polarization values that varied with reaction times. The SX-ZnO sample prepared for 5 h exhibited the best stored energy properties, featuring a moderate stored energy density (Ws = 771.94 mJ cm-3) and a high energy efficiency of 83.38%. This investigation underscores that the modification of siloxene layers through the deposition of nanostructured transition metal oxide materials leads to stabilized interfacial polarization and enhanced efficient energy storage.

2.
Nanomaterials (Basel) ; 14(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38334591

ABSTRACT

We theoretically study the generic mechanisms that could establish critical behavior in nematic liquid crystals (NLCs). The corresponding free energy density terms should exhibit linear coupling with the nematic order parameter and, via this coupling, enhance the nematic order. We consider both temperature- and pressure-driven, order-disorder phase transitions. We derive a scaled effective free energy expression that describes how qualitatively different mechanisms enforce critical behavior. Our main focus is on the impact of nanoparticles (NPs) in homogeneous NP-NLC mixtures. We illustrate that in the case of pressure-driven phase changes, lower concentrations are needed to impose critical point conditions in comparison with pure temperature variations.

3.
RSC Adv ; 13(37): 26041-26049, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37664189

ABSTRACT

In the most recent electronic and electric sectors, ceramic-polymer nanocomposites with high dielectric permittivity and energy density are gaining popularity. However, the main obstacle to improving the energy density in flexible nanocomposites, besides the size and morphology of the ceramic filler, is the low interfacial compatibility between the ceramic and the polymer. This paper presents an alternative solution to improve the dielectric permittivity and energy storage properties for electronic applications. Here, the poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) matrix is filled with surface-modified BaTi0.89Sn0.11O3/polydopamine nanoparticles (BTS11) nanoparticles, which is known for exhibiting multiphase transitions and reaching a maximum dielectric permittivity at room temperature. BTS11 nanoparticles were synthesized by a sol-gel/hydrothermal method at 180 °C and then functionalized by polydopamine (PDA). As a result, the nanocomposites exhibit dielectric permittivity (εr) of 46 and a low loss tangent (tan δ) of 0.017 at 1 kHz at a relatively low weight fraction of 20 wt% of BTS11@PDA. This is approximately 5 times higher than the pure PVDF-HFP polymer and advantageous for energy storage density in nanocomposites. The recovered energy storage for our composites reaches 134 mJ cm-3 at an electric field of 450 kV cm-1 with a high efficiency of 73%. Incorporating PDA-modified BTS11 particles into the PVDF-HFP matrix demonstrates highly piezo-active regions associated with BTS11 particles, significantly enhancing functional properties in the polymer nanocomposites.

4.
Heliyon ; 9(3): e14035, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36895355

ABSTRACT

The active electrocaloric (EC) regenerator exploiting electric conversion into thermal energy has recently become important for developing a new generation of heat-management devices. We analyze an active EC regenerator numerically. We establish a temperature span across the regenerator Δ T by commuting a liquid crystalline (LC) unit between regions with and without an external electric field E. In modelling, we use Landau-de Gennes mesoscopic approach, focusing on the temperature regime where isotropic (paranematic) and nematic phase order compete. We determined conditions enabling a large enough value of Δ T suitable for potential applications. In particular, (i) the vicinity of the paranematic-nematic (P-N) phase transition, (ii) large enough latent heat of the transition, (iii) strong enough applied external field (exceeding the critical field E c at which the P-N transition becomes gradual), and (iv) relatively short contact times between LC unit and heat sink and heat source reservoirs are advantageous. Our analysis reveals that Δ T ≫ 1 K could be achieved using appropriate LC material.

5.
Nanoscale Adv ; 4(21): 4658-4668, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36341296

ABSTRACT

Mechanical energy harvesting using piezoelectric nanogenerators (PNGs) offers an attractive solution for driving low-power portable devices and self-powered electronic systems. Here, we designed an eco-friendly and flexible piezocomposite nanogenerator (c-PNG) based on H2(Zr0.1Ti0.9)3O7 nanowires (HZTO-nw) and Ba0.85Ca0.15Zr0.10Ti0.90O3 multipods (BCZT-mp) as fillers and polylactic acid (PLA) as a biodegradable polymer matrix. The effects of the applied stress amplitude, frequency and pressing duration on the electric outputs in the piezocomposite nanogenerator (c-PNG) device were investigated by simultaneous recording of the mechanical input and the electrical outputs. The fabricated c-PNG shows a maximum output voltage, current and volumetric power density of 11.5 V, 0.6 µA and 9.2 mW cm-3, respectively, under cyclic finger imparting. A high-pressure sensitivity of 0.86 V kPa-1 (equivalent to 3.6 V N-1) and fast response time of 45 ms were obtained in the dynamic pressure sensing. Besides this, the c-PNG demonstrates high-stability and durability of the electrical outputs for around three months, and can drive commercial electronics (charging capacitor, glowing light-emitting diodes and powering a calculator). Multi-physics simulations indicate that the presence of BCZT-mp is crucial in enhancing the piezoelectric response of the c-PNG. Accordingly, this work reveals that combining 1D and 3D fillers in a polymer composite-based PNG could be beneficial in improving the mechanical energy harvesting performances in flexible piezoelectric nanogenerators for application in electronic skin and wearable devices.

6.
Materials (Basel) ; 15(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35955158

ABSTRACT

Ferroelectric property that induces electrocaloric effect was investigated in Ba(GexTi1-x)O3 ceramics, known as BTGx. X-ray diffraction analysis shows pure perovskite phases in tetragonal symmetry compatible with the P4mm (No. 99) space group. Dielectric permittivity exhibits first-order ferroelectric-paraelectric phase transition, confirmed by specific heat measurements, similar to that observed in BaTiO3 (BTO) crystal. Curie temperature varies weakly as a function of Ge-content. Using the direct and indirect method, we confirmed that the adiabatic temperature change ΔT reached its higher value of 0.9 K under 8 kV/cm for the composition BTG6, corresponding to an electrocaloric responsivity ΔT/ΔE of 1.13 × 10-6 K.m/V. Such electrocaloric responsivity significantly exceeds those obtained so far in other barium titanate-based lead-free electrocaloric ceramic materials. Energy storage investigations show promising results: stored energy density of ~17 mJ/cm3 and an energy efficiency of ~88% in the composition BTG5. These results classify the studied materials as candidates for cooling devices and energy storage applications.

7.
Eur Phys J E Soft Matter ; 45(7): 63, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35876902

ABSTRACT

We study bicomponent systems where one component represents a liquid crystalline (LC) phase, and the other component randomly perturbs the LC order. Such systems can serve as a testbed to systematically analyse the impact of qualitatively different types of random-type sources of perturbation on the orientational and/or translational order. This mini-review presents typical representatives of such systems, where orientational and translational order is probed in nematic and smectic A LCs, respectively. As a source of perturbation, we consider either different porous matrices (control-pore glass, aerogels) or aerosil nanoparticles, which can form in LCs' different fractal-like network organizations. In such complex systems, LC ordering fingerprints the interplay among LC elastic forces, interfacial forces, and randomness. The resulting LC behaviour could be characterised by either long-range, quasi long-range, or short-range order. We demonstrate under which conditions random-field-like phenomena or interfacial effects dominate. However, these effects are relatively strongly entangled in most experimental systems, and individual impacts cannot be precisely identified.

8.
Phys Chem Chem Phys ; 24(10): 6026-6036, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35202452

ABSTRACT

The design of lead-free ceramics for piezoelectric energy harvesting applications has become a hot topic. Among these materials, Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT) and BaTi0.89Sn0.11O3 (BTSn) are considered as potential candidates due to their enhanced piezoelectric properties. Here, the structural, electrical, piezoelectric and piezoelectric energy harvesting properties of the (1 - x)Ba0.85Ca0.15Zr0.10Ti0.90O3-xBaTi0.89Sn0.11O3 (xBTSn, x = 0.2, 0.4 and 0.6) system are investigated. A systematic study of the structural properties of the xBTSn samples was carried out using X-ray diffraction, Raman spectroscopy, and dielectric measurements. The addition of BTSn allows a successive phase transition, which broadens the application temperature range. The enhanced piezoelectric energy harvesting properties were found in the 0.2BTSn ceramic, where the large-signal and small-signal piezoelectric coefficients, piezoelectric voltage and the piezoelectric figure of merit reached 245 pm V-1, 228 pC N-1, 16.2 mV m N-1 and 3.7 pm2 N-1, respectively. Consequently, the combination of BCZT and BTSn could provide suitable lead-free materials with enhanced piezoelectric energy harvesting performances.

9.
Nanomaterials (Basel) ; 11(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34835732

ABSTRACT

Recent advances in experimental studies of nanoparticle-driven stabilization of chiral liquid-crystalline phases are highlighted. The stabilization is achieved via the nanoparticles' assembly in the defect lattices of the soft liquid-crystalline hosts. This is of significant importance for understanding the interactions of nanoparticles with topological defects and for envisioned technological applications. We demonstrate that blue phases are stabilized and twist-grain boundary phases are induced by dispersing surface-functionalized CdSSe quantum dots, spherical Au nanoparticles, as well as MoS2 nanoplatelets and reduced-graphene oxide nanosheets in chiral liquid crystals. Phase diagrams are shown based on calorimetric and optical measurements. Our findings related to the role of the nanoparticle core composition, size, shape, and surface coating on the stabilization effect are presented, followed by an overview of and comparison with other related studies in the literature. Moreover, the key points of the underlying mechanisms are summarized and prospects in the field are briefly discussed.

10.
Molecules ; 26(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467518

ABSTRACT

We report on strong pretransitional effects across the isotropic liquid-plastic crystal melting temperature in linear and nonlinear dielectric response. Studies were carried out for cyclooctanol (C8H16O) in the unprecedented range of temperatures 120 K < T < 345 K. Such pretransitional effects have not yet been reported in any plastic crystals. Results include the discovery of the experimental manifestation of the Mossotti Catastrophe behavior, so far considered only as a hypothetical paradox. The model interpretations of experimental findings are proposed. We compare the observed pretransitional behavior with the one observed in octyloxycyanobiphenyl (8OCB), typical liquid crystal (LC), displaying a reversed sequence of phase transitions in orientational and translational degrees of order on varying temperature. Furthermore, in its nematic phase, we demonstrate first-ever observed temperature-driven crossover between regions dominated by isotropic liquid and smectic A pretransitional fluctuations. We propose a pioneering minimal model describing plastic crystal phase behavior where we mimic derivation of classical Landau-de Gennes-Ginzburg modeling of Isotropic-Nematic-Smectic A LC phase behavior.


Subject(s)
Liquid Crystals/chemistry , Plastics/chemistry , Crystallization , Models, Chemical , Phase Transition , Temperature , Thermodynamics
11.
RSC Adv ; 11(16): 9459-9468, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-35423414

ABSTRACT

The lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT) relaxor ferroelectric ceramic has aroused much attention due to its enhanced piezoelectric, energy storage and electrocaloric properties. In this study, the BCZT ceramic was elaborated by the solid-state reaction route, and the temperature-dependence of the structural, electrical, piezoelectric, energy storage and electrocaloric properties was investigated. X-ray diffraction analysis revealed a pure perovskite phase, and the temperature-dependence of Raman spectroscopy, dielectric and ferroelectric measurements revealed the phase transitions in the BCZT ceramic. At room temperature, the strain and the large-signal piezoelectric coefficient reached a maximum of 0.062% and 234 pm V-1, respectively. Furthermore, enhanced recovered energy density (W rec = 62 mJ cm-3) and high-energy storage efficiency (η) of 72.9% at 130 °C were found. The BCZT ceramic demonstrated excellent thermal stability of the energy storage variation (ESV), less than ±5.5% in the temperature range of 30-100 °C compared to other lead-free ceramics. The electrocaloric response in the BCZT ceramic was explored via the indirect approach by using the Maxwell relation. Significant electrocaloric temperature change (ΔT) of 0.57 K over a broad temperature span (T span = 70 °C) and enhanced coefficient of performance (COP = 11) were obtained under 25 kV cm-1. The obtained results make the BCZT ceramic a suitable eco-friendly material for energy storage and solid-state electrocaloric cooling devices.

12.
RSC Adv ; 10(51): 30746-30755, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-35516015

ABSTRACT

Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT) relaxor ferroelectric ceramics exhibit enhanced energy storage and electrocaloric performances due to their excellent dielectric and ferroelectric properties. In this study, the temperature-dependence of the structural and dielectric properties, as well as the field and temperature-dependence of the energy storage and the electrocaloric properties in BCZT ceramics elaborated at low-temperature hydrothermal processing are investigated. X-ray diffraction and Raman spectroscopy results confirmed the ferroelectric-paraelectric phase transition in the BCZT ceramic. At room temperature and 1 kHz, the dielectric constant and dielectric loss reached 5000 and 0.029, respectively. The BCZT ceramic showed a large recovered energy density (W rec) of 414.1 mJ cm-3 at 380 K, with an energy efficiency of 78.6%, and high thermal-stability of W rec of 3.9% in the temperature range of 340-400 K. The electrocaloric effect in BCZT was explored via an indirect approach following the Maxwell relation at 60 kV cm-1. The significant electrocaloric temperature change of 1.479 K at 367 K, a broad temperature span of 87 K, an enhanced refrigerant capacity of 140.33 J kg-1, and a high coefficient of performance of 6.12 obtained at 60 kV cm-1 make BCZT ceramics potentially useful coolant materials in the development of future eco-friendly solid-state refrigeration technology.

13.
Sci Rep ; 9(1): 1721, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30742022

ABSTRACT

Electrocaloric materials have become a viable technology for solid state heat management applications. We demonstrate both theoretically and experimentally that liquid crystals (LCs) can be exploited as efficient electrocaloric materials. Numerical and experimental investigations determine the conditions under which the strongest electrocaloric effect (ECE) responses are expected in LCs. Specifically, we show that a large ECE can be expected at the isotropic-nematic and in particular at the isotropic-smectic A phase transition. In our theoretical study, LC ordering is modelled using a Landau - de Gennes - Ginzburg mesoscopic approach. The simulation results are in qualitative agreement with our high precision electrocaloric measurements conducted on 8CB and 12CB liquid crystals. In the latter, we obtained ΔTEC ~ 6.5 K, corresponding to the largest response measured so far in LCs. The fluid property of LC electrocaloric heat cooling elements could lead to the development of devices with a higher coefficient of performance and thus better cooling power yield per mass of the ECE-based device.

14.
Philos Trans A Math Phys Eng Sci ; 374(2074)2016 Aug 13.
Article in English | MEDLINE | ID: mdl-27402927

ABSTRACT

Materials with large caloric effect have the promise of realizing solid-state refrigeration which has potential to be more efficient and environmentally friendly compared with current cooling technologies. Recently, the focus of caloric effects investigations has shifted towards soft materials. An overview of recent direct measurements of the large electrocaloric effect (ECE) in a composite mixture of a liquid crystal and nanoparticles (NPs) and large elastocaloric (eC) effect in main-chain liquid crystal elastomers is given. In mixtures of 12CB liquid crystal with functionalized CdSSe NPs, an ECE exceeding 5 K was found in the vicinity of the isotropic to smectic A phase transition. It is shown that the NPs smear the isotropic to smectic coexistence range in which a large ECE is observed due to latent heat enhancement. NPs acting as traps for ions reduce the moving-ion density and consequently the Joule heating. Direct eC measurements indicate that the significant eC response can be found in main-chain liquid crystalline elastomers, but at a fraction of the stress field in contrast to other eC materials. Both soft materials could play a significant role as active cooling elements or parts of thermal diodes in development of new cooling devices.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

15.
Sci Rep ; 6: 26629, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27220403

ABSTRACT

The existence and feasibility of the multicaloric, polycrystalline material 0.8Pb(Fe1/2Nb1/2)O3-0.2Pb(Mg1/2W1/2)O3, exhibiting magnetocaloric and electrocaloric properties, are demonstrated. Both the electrocaloric and magnetocaloric effects are observed over a broad temperature range below room temperature. The maximum magnetocaloric temperature change of ~0.26 K is obtained with a magnetic-field amplitude of 70 kOe at a temperature of 5 K, while the maximum electrocaloric temperature change of ~0.25 K is obtained with an electric-field amplitude of 60 kV/cm at a temperature of 180 K. The material allows a multicaloric cooling mode or a separate caloric-modes operation depending on the origin of the external field and the temperature at which the field is applied.

16.
Article in English | MEDLINE | ID: mdl-25314459

ABSTRACT

By means of high-resolution ac calorimetry and polarizing optical microscopy, it is demonstrated that surface-functionalized spherical CdSSe nanoparticles induce a twist-grain boundary phase when dispersed in a chiral liquid crystal. These nanoparticles can effectively stabilize the one-dimensional lattice of screw dislocations, thus establishing the twist-grain boundary order between the cholesteric and the smectic-A phases. A Landau-de Gennes-Ginzburg model is used to analyze the impact of nanoparticles on widening the temperature range of molecular organizations possessing a lattice of screw dislocations. We show that in addition to the defect-core-replacement mechanism, the saddle-splay elasticity may also play a significant role.


Subject(s)
Models, Theoretical , Nanoparticles/chemistry , Elasticity , Liquid Crystals/chemistry , Surface Properties , Thermodynamics
17.
Article in English | MEDLINE | ID: mdl-24125282

ABSTRACT

Spherical CdSe nanoparticles, surface-treated with oleylamine and tri-octylphosphine, dispersed in ferroelectric liquid crystals, can efficiently target disclination lines, substantially altering the macroscopic properties of the host compound. Here we present an ac calorimetry and x-ray diffraction study demonstrating that for a large range of nanoparticle concentrations the smectic-A layer thickness increases monotonically. This provides evidence for enhanced accumulation of nanoparticles at the smectic layers. Our results for the Smectic-A (SmA) to chiral smectic-C (SmC) phase transition of the liquid crystal S-(+)4-(2'-methylbutyl)phenyl-4'-n-octylbiphenyl-4-carboxylate (CE8) reveal that the character of the transition is profoundly changed as a function of the nanoparticle concentration. Large transition temperature shifts are recorded. Moreover, the heat-capacity peaks exhibit a crossover trend to a step-like anomaly. This behavior may be linked to the weakening of the SmA and SmC order parameter coupling responsible for the observed near-tricritical, mean-field character of the transition in bulk CE8. At lower temperatures, the presence of nanoparticles disrupts the phase sequence involving the tilted hexatic phases most likely by obstructing the establishment of long-range bond-orientational order.

18.
Appl Opt ; 52(22): E47-52, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23913087

ABSTRACT

Liquid-crystalline blue phases are attracting significant interest due to their potential for applications related to tunable photonic crystals and fast optical displays. In this work a brief theoretical model is presented accounting for the impact of anisotropic nanoparticles on the blue phase stability region. This model is tested by means of high-resolution calorimetric and optical measurements of the effect of anisotropic, surface-functionalized MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. The addition of these nanoparticles effectively increases the temperature range of blue phases and especially the cubic structure of blue phase I.

19.
J Phys Condens Matter ; 25(21): 212201, 2013 May 29.
Article in English | MEDLINE | ID: mdl-23636937

ABSTRACT

Previous studies of unstable ('soft') optical modes in ferroelectrics have reported minimum frequencies of 1 cm(-1) (30 GHz) for underdamped phonons. In this work we fabricate a cylindrical coaxial specimen and rectangular plate waveguide specimens of tris-sarcosine calcium chloride (TSCC) and follow its soft mode several orders of magnitude lower to 1 GHz. Below 30 GHz the relaxation time is probably characteristic of domain wall motion; the new theory of Pakhomov et al (2013 Ferroelectrics at press) predicts 0.5 THz far from TC and a (T - T(C))/T(C) dependence, in agreement with our experimental values. This discovery has implications for GHz electronics such as phased array radar or other voltage-tunable low-loss components. The mean-field frequency description of the soft mode response f(T) is supported via precision calorimetry on TSCC with and without Br-doping. The ferroelectric-antiferroelectric phase transition, previously suggested from high-pressure data, is confirmed at 45 K at 1 atm.

20.
Phys Rev Lett ; 109(3): 037601, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22861896

ABSTRACT

Motivated by the long-standing unresolved enigma of the relaxor ferroelectric ground state, we performed a high-resolution heat capacity and polarization study of the field-induced phase transition in the relaxor ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O3 (PMN) oriented along the [110] direction. We show that the discontinuous evolution of polarization as a function of the electric field or temperature is a consequence of a true first order transition from a glassy to ferroelectric state, which is accompanied by an excess heat capacity anomaly and released latent heat. We also find that in a zero field there is no ferroelectric phase transition in bulk PMN at any temperature, indicating that the nonergodic dipolar glass phase persists down to the lowest temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...