Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(3)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37827140

ABSTRACT

Aim. In this study, blood compatibility of ZnO nanoparticles-polymer nanocomplex (D-PAA/ZnONPs(SO42-)) synthesizedin situinto dextran-graft-polyacrylamide (D-PAA) using zinc sulphate as a precursor was tested using hemolysis, osmotic fragility and eryptosis assays.Materials and methods. Dose-dependent ability to induce eryptosis was assessed following 24 h incubation at concentrations of 0-800 mg l-1analyzing hallmarks of eryptosis (cell shrinkage and phosphatidylserine externalization), as well as reactive oxygen species generation. Hemolysis was detected spectrophotometrically based on hemoglobin release following exposure to the D-PAA/ZnONPs(SO42-) nanocomplex. Osmotic fragility test (OFT) involved detection of hemolysis of red blood cells exposed to 0.2% saline solution following incubation with the D-PAA/ZnONPs(SO42-) nanocomplex. Additional incubation of the nanocomplex in the presence or absence of either ascorbic acid or EGTA was used to reveal the implication of oxidative stress- or Ca2+-mediated mechanisms in D-PAA/ZnONPs(SO42-) nanocomplex-induced erythrotoxicity.Results. Hemocompatibility assessment of the D-PAA/ZnONPs(SO42-) nanocomplex revealed that it induced hemolysis and reduced resistance of erythrocytes to osmotic stress at concentrations of above 400 and 200 mg l-1, respectively. Oxidative stress- or Ca2+-mediated mechanisms were not involved in D-PAA/ZnONPs(SO42-) nanocomplex-induced hemolysis. Strikingly, the D-PAA/ZnONPs(SO42-) nanocomplex did not promote cell membrane scrambling, cell shrinkage and oxidative stress in red blood cells following the direct exposure for 24 h. Thus, the D-PAA/ZnONPs(SO42-) nanocomplex did not induce eryptosisin vitro. Eryptosis is generally considered to occur earlier than hemolysis in response to stress in order to prevent hemolytic cell death. Counterintuitively, our data suggest that hemolysis can be triggered by nanomaterials prior to eryptosis indicating that eryptosis and hemolysis assays should be used in combination for testing blood compatibility of nanomaterials.Conclusions. The D-PAA/ZnONPs(SO42-) nanocomplex has a good hemocompatibility profile at low concentrations. Hemocompatibility testing in nanotoxicology should include both eryptosis and hemolysis assays.


Subject(s)
Eryptosis , Zinc Oxide , Humans , Zinc Oxide/toxicity , Dextrans , Reactive Oxygen Species/metabolism , Hemolysis , Erythrocytes , Oxidative Stress , Cell Death , Calcium
2.
Polymers (Basel) ; 14(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36080514

ABSTRACT

We explored two approaches to recover uranium and plutonium from aqueous solutions at pH 4 and pH 7 using water-soluble star-like polyacrylamide polymers with a dextran core. In the first approach, a solution comprising a neutral or ionomer polymer was mixed with a radionuclide solution to form polymer-metal complexes that were then retained by ultrafiltration (UF) membranes under applied pressure. The same polymers were first deposited on the membrane in the second approach using pressure-driven flow. The applied polymers had an overall diameter of gyration of 120 nm, which exceeded the nominal diameter of the UF membrane pores. The polymers showed a high affinity to uranyl but could also be used to extract Pu from neutral or near-neutral pH solutions. Direct-flow single-step filtration and alpha spectrometry demonstrated that the UF membranes containing star-like copolymers could recover 99% of U and up to 60% of Pu from deionized water after filtering 15 mL solutions containing 25 ppm and 33 ppb of the actinides, correspondingly. The sorption capacity of the polymers for uranium could be measured as 1mg U per mg of the polymer after six subsequent filtration steps. Alpha spectroscopy of the deposited actinides revealed peculiarities of the structural organization of polymers and their complexes with U or Pu, depending on the approach. Though both approaches were efficient, the second approach (deposition of the polymer on the membrane followed by filtration) has an additional advantage of protecting the membrane pores from capillary collapse by filling them with the polymer chains. Therefore, these polymer-modified membranes could be used either in continuous or multi-step filtration process with drying after each step without deterioration of their sorption characteristics.

3.
Nanomaterials (Basel) ; 12(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35957085

ABSTRACT

The thermoresponsive Zinc TetraPhenylPorphyrin photosensitizer/Dextran poly (N-isopropylacrylamide) graft copolymer/Au Nanoparticles (ZnTPP/D-g-PNIPAM/AuNPs) triple hybrid nanosystem was synthesized in aqueous solution as a nanodrug for potential use in thermally driven and controlled photodynamic therapy applications. The aqueous solution of the nanosystem has demonstrated excellent stability in terms of aggregation and sedimentation several days after preparation. Optimal concentrations of the components of hybrid nanosystem providing the lowest level of aggregation and the highest plasmonic enhancement of electronic processes in the photosensitizer molecules have been determined. It has been revealed that the shrinking of D-g-PNIPAM macromolecule during a thermally induced phase transition leads to the release of both ZnTPP molecules and Au NPs from the ZnTPP/D-g-PNIPAM/AuNPs macromolecule and the strengthening of plasmonic enhancement of the electronic processes in ZnTPP molecules bound with the polymer macromolecule. The 2.7-fold enhancement of singlet oxygen photogeneration under resonant with surface plasmon resonance has been observed for ZnTPP/D-g-PNIPAM/AuNPs proving the plasmon nature of such effect. The data obtained in vitro on wild strains of Staphylococcus aureus have proved the high potential of such nanosystem for rapid photodynamic inactivation of microorganisms particular in wounds or ulcers on the body surface.

4.
RSC Adv ; 12(1): 11-23, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35424518

ABSTRACT

A zinc tetraphenylporphyrin photosensitizer/dextran graft polyacrylamide anionic copolymer/Au nanoparticles (ZnTPP/D-g-PAAan/AuNPs) triple hybrid nanosystem was synthesized in water-based solution as a nanodrug for potential photodynamic therapy applications. Dynamic light scattering studies showed that the nanosystem is stable against aggregation and sedimentation for several days after preparation. The dependence of the ZnTPP fluorescence intensity on the gold concentration in the ZnTPP/D-g-PAAan/AuNPs nanosystem has been revealed to be non-monotonic, with a maximum 2.5-fold enhancement at a concentration of 0.008 g L-1. The non-monotonic dependence was explained to be caused by two competing processes, namely plasmonic enhancement and FRET, indicating the existence of an optimal concentration of Au NPs that can provide the highest plasmonic enhancement of the electronic processes involving the ZnTPP photosensitizer. A 2.6-fold enhancement of singlet oxygen photogeneration under excitation resonant with the localized surface plasmon resonance of the Au NPs has been detected for ZnTPP/D-g-PAAan/AuNPs, proving the plasmonic origin of this phenomenon. The high bactericidal efficiency of ZnTPP/D-g-PAAan/AuNPs water-based solution under 420 nm and 530 nm light irradiation was revealed against wild strains of Staphylococcus aureus. Therefore, the ZnTPP/D-g-PAAan/AuNPs nanosystem can potentially be used in photodynamic therapy for the prevention and treatment of the bacterial contamination of open wounds.

5.
RSC Adv ; 8(67): 38400-38409, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-35559101

ABSTRACT

Laser induced structural transformations in a dextran grafted-poly(N-isopropylacrylamide) copolymer/Au nanoparticles (D-g-PNIPAM/AuNPs) hybrid nanosystem in water have been observed. The laser induced local plasmonic heating of Au NPs leads to Lower Critical Solution Temperature (LCST) phase transition in D-g-PNIPAM/AuNPs macromolecules accompanied by their shrinking and aggregation. The hysteresis non-reversible character of the structural transformation in D-g-PNIPAM/AuNPs system has been observed at the decrease of laser intensity, i.e. the aggregates remains in solution after the turn-off the laser illumination. This is an essential difference comparing to the case of usual heating-cooling cycles when there is no formation of aggregates and structural transformations are reversible. Such a fundamental difference has been rationalized as the result of action of attractive optical forces arising due to the excitation of surface plasmons in Au NPs. The attractive plasmonic forces facilitate the formation of the aggregates and counteract their destruction. The laser induced structural transformations have been found to be very sensitive to matching conditions of the resonance of the laser light with surface plasmon resonance proving the plasmonic nature of observed phenomena.

SELECTION OF CITATIONS
SEARCH DETAIL
...