Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Mol Biol (Mosk) ; 57(2): 285-298, 2023.
Article in Russian | MEDLINE | ID: mdl-37000656

ABSTRACT

Base excision repair (BER) is aimed at repair of damaged bases, which are the largest group of DNA lesions. The main steps of BER are recognition and removal of the aberrant base, cutting of the DNA sugar-phosphate backbone, gap processing (including dNMP insertion), and DNA ligation. The precise function of BER depends on the regulation of each step by regulatory/accessory proteins, the most important of which is poly(ADP-ribose) (PAR) polymerase 1 (PARP1). PARP1 plays an important role in DNA repair, maintenance of genome integrity, and regulation of mRNA stability and decay. PARP1 can therefore affect BER both at the level of BER proteins and at the level of their mRNAs. There is no systematic data on how the PARP1 content affects the activities of key BER proteins and the levels of their mRNAs in human cells. Whole-cell extracts and RNA preparations obtained from the parental HEK293T cell line and its derivative HEK293T/P1-KD cell line with reduced PARP1 expression (shPARP1-expressing cells, a PARP1 knockdown) were used to assess the levels of mRNAs coding for BER proteins: PARP1, PARP2, uracil DNA glycosylase (UNG2), AP endonuclease 1 (APE1), DNA polymerase ß (POLß), DNA ligase III (LIG3), and XRCC1. Catalytic activities of the enzymes were evaluated in parallel. No significant effect of the PARP1 content was observed for the mRNA levels of UNG2, APE1, POLß, LIG3, and XRCC1. The amount of the PARP2 mRNA proved to be reduced two times in HEK293T/P1-KD cells. Activities of these enzymes in whole-cell extracts did not differ significantly between HEK293T and HEK293T/P1-KD cells. No significant change was observed in the efficiencies of the reactions catalyzed by UNG2, APE1, POLß, and LIG3 in conditions of PAR synthesis. A DNA PARylation pattern did not dramatically change in a HEK293T/P1-KD cell extract with a reduced PARP1 content as compared with an extract of the parental HEK293T cell line.


Subject(s)
DNA Repair , Poly(ADP-ribose) Polymerases , Humans , Cell Extracts , HEK293 Cells , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , DNA Repair/genetics , DNA/genetics , DNA Damage , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism
2.
Sci Rep ; 11(1): 4849, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33649352

ABSTRACT

The regulation of repair processes including base excision repair (BER) in the presence of DNA damage is implemented by a cellular signal: poly(ADP-ribosyl)ation (PARylation), which is catalysed by PARP1 and PARP2. Despite ample studies, it is far from clear how BER is regulated by PARPs and how the roles are distributed between the PARPs. Here, we investigated the effects of PARP1, PARP2 and PARylation on activities of the main BER enzymes (APE1, DNA polymerase ß [Polß] and DNA ligase IIIα [LigIIIα]) in combination with BER scaffold protein XRCC1 in the nucleosomal context. We constructed nucleosome core particles with midward- or outward-oriented damage. It was concluded that in most cases, the presence of PARP1 leads to the suppression of the activities of APE1, Polß and to a lesser extent LigIIIα. PARylation by PARP1 attenuated this effect to various degrees depending on the enzyme. PARP2 had an influence predominantly on the last stage of BER: DNA sealing. Nonetheless, PARylation by PARP2 led to Polß inhibition and to significant stimulation of LigIIIα activities in a NAD+-dependent manner. On the basis of the obtained and literature data, we suggest a hypothetical model of the contribution of PARP1 and PARP2 to BER.


Subject(s)
DNA Repair , DNA/chemistry , Nucleosomes/chemistry , Poly (ADP-Ribose) Polymerase-1/chemistry , Poly ADP Ribosylation , Poly(ADP-ribose) Polymerases/chemistry , DNA/metabolism , Humans , Nucleosomes/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerases/metabolism
3.
Adv Exp Med Biol ; 1241: 47-57, 2020.
Article in English | MEDLINE | ID: mdl-32383115

ABSTRACT

DNA is constantly attacked by different damaging agents; therefore, it requires frequent repair. On the one hand, the base excision repair (BER) system is responsible for the repair of the most frequent DNA lesions. On the other hand, the formation of poly(ADP-ribose) is one of the main DNA damage response reactions that is catalysed by members of the PARP family. PARP1, which belongs to the PARP family and performs approximately 90% of PAR synthesis in cells, could be considered a main regulator of the BER process. Most of the experimental data concerning BER investigation have been obtained using naked DNA. However, in the context of the eukaryotic cell, DNA is compacted in the nucleus, and the lowest compaction level is represented by the nucleosome. Thus, the organization of DNA into the nucleosome impacts the DNA-protein interactions that are involved in BER processes. Poly(ADP-ribosyl)ation (PARylation) is thought to regulate the initiation of the BER process at the chromatin level. In this review, we focus on the mechanisms involved in BER in the nucleosomal context and the potential effect of PARylation, which is catalysed by DNA-dependent PARP1, PARP2 and PARP3 proteins, on this process.


Subject(s)
DNA Damage , DNA Repair , DNA/genetics , DNA/metabolism , Nucleosomes/genetics , Poly(ADP-ribose) Polymerases/metabolism , Animals , Humans
4.
Dokl Biochem Biophys ; 482(1): 233-237, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30397881

ABSTRACT

Poly(ADP-ribosyl)ation, which is catalyzed by PARP family proteins, is one of the main reactions in the cell response to genomic DNA damage. Massive impact of DNA-damaging agents (such as oxidative stress and ionizing radiation) causes numerous breaks in DNA. In this case, the development of a fast cell response, which allows the genomic DNA integrity to be retained, may be more important than the repair by more accurate but long-term restoration of the DNA structure. This is the first study to show the possibility of eliminating DNA breaks through their PARP3-dependent mono(ADP-ribosyl)ation followed by ligation and repair of the formed ribo-AP sites by the base excision repair (BER) enzyme complex. Taken together, the results of the studies on ADP-ribosylation of DNA and the data obtained in this study suggest that PARP3 may be a component of the DNA break repair system involving the BER enzyme complex.


Subject(s)
Cell Cycle Proteins/pharmacology , DNA Breaks , DNA Repair/drug effects , Poly(ADP-ribose) Polymerases/pharmacology , Animals , Humans , Signal Transduction/drug effects
5.
Mol Biol (Mosk) ; 48(4): 561-72, 2014.
Article in Russian | MEDLINE | ID: mdl-25842842

ABSTRACT

The genome stability of higher eukaryotes is mainly dependent on the functioning of the DNA repair systems. In turn, the precise regulation of each step of repair processes is required for efficient DNA repair. While at present the most pathways of DNA repair have been established already, but the mechanisms of DNA repair regulation are required further investigation. Poly(ADP-ribose)polymerases (PARPs) are widely considered as potential regulators of a DNA repair. The role of most prominent member of this protein family--PARP1--in DNA repair is intensively studied, while the literature data on participation in repair processes of PARP2--the closestPARP1 homolog--are poorly Sum- marized although a great body of information concerning PARP2 participation in DNA repair has accumulated.. Using PARP2-deficient model organisms and cell lines, their increased sensitivity to several DNA damage agents was elucidated. The accumulation of PARP2 at the DNA damage sites in cells was shown. There are data demonstrating protein-protein interaction of PARP2 with several base excision repair/single strand break repair and non-homologous end joining proteins. Most of the data on PARP2 role have been obtained in experiments with model organisms and cell lines so it is difficult to project the attribution of PARP2 influence to specific process in vivo. In this review, we tried to summarize data on PARP2 participation in DNA repair processes, including our recent results.


Subject(s)
DNA Repair/physiology , Poly(ADP-ribose) Polymerases/metabolism , Animals , Catalytic Domain , Humans , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics
6.
Biochemistry (Mosc) ; 76(1): 147-56, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21568846

ABSTRACT

To study the interaction of poly(ADP-ribose) polymerase 1 (PARP1) with apurinic/apyrimidinic sites (AP sites) within clustered damages, DNA duplexes were created that contained an AP site in one strand and one of its analogs situated opposite the AP site in the complementary strand. Residues of 3-hydroxy-2-hydroxymethyltetrahydrofuran (THF), diethylene glycol (DEG), and decane-1,10-diol (DD) were used. It is shown for the first time that apurinic/apyrimidinic endonuclease 1 (APE1) cleaves the DNA strands at the positions of DEG and DD residues, and this suggests these groups as AP site analogs. Insertion of DEG and DD residues opposite an AP site decreased the rate of AP site hydrolysis by APE1 similarly to the effect of the THF residue, which is a well-known analog of the AP site, and this allowed us to use such AP DNAs to imitate DNA with particular types of clustered damages. PARP1, isolated and in cell extracts, efficiently interacted with AP DNA with analogs of AP sites producing a Schiff base. PARP1 competes with APE1 upon interaction with AP DNAs, decreasing the level of its cross-linking with AP DNA, and inhibits hydrolysis of AP sites within AP DNAs containing DEG and THF residues. Using glutaraldehyde as a linking agent, APE1 is shown to considerably decrease the amount of AP DNA-bound PARP1 dimer, which is the catalytically active form of this enzyme. Autopoly(ADP-ribosyl)ation of PARP1 decreased its inhibitory effect. The possible involvement of PARP1 and its automodification in the regulation of AP site processing within particular clustered damages is discussed.


Subject(s)
DNA Damage , DNA Repair , DNA/chemistry , DNA/genetics , Poly(ADP-ribose) Polymerases/metabolism , Binding Sites , Cell Line , DNA/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Humans , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics , Protein Binding
7.
Proc Natl Acad Sci U S A ; 107(51): 22090-5, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21127267

ABSTRACT

The capacity of human poly(ADP-ribose) polymerase-1 (PARP-1) to interact with intact apurinic/apyrimidinic (AP) sites in DNA has been demonstrated. In cell extracts, sodium borohydride reduction of the PARP-1/AP site DNA complex resulted in covalent cross-linking of PARP-1 to DNA; the identity of cross-linked PARP-1 was confirmed by mass spectrometry. Using purified human PARP-1, the specificity of PARP-1 binding to AP site-containing DNA was confirmed in competition binding experiments. PARP-1 was only weakly activated to conduct poly(ADP-ribose) synthesis upon binding to AP site-containing DNA, but was strongly activated for poly(ADP-ribose) synthesis upon strand incision by AP endonuclease 1 (APE1). By virtue of its binding to AP sites, PARP-1 could be poised for its role in base excision repair, pending DNA strand incision by APE1 or the 5'-dRP/AP lyase activity in PARP-1.


Subject(s)
DNA Repair/physiology , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Binding Sites , Borohydrides/chemistry , DNA/chemistry , DNA/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Enzyme Activation , HeLa Cells , Humans , Oxidation-Reduction , Poly (ADP-Ribose) Polymerase-1 , Poly Adenosine Diphosphate Ribose/chemistry , Poly Adenosine Diphosphate Ribose/genetics , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...