Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(3)2022 02 26.
Article in English | MEDLINE | ID: mdl-35336090

ABSTRACT

The contribution of cold-adapted yeasts to the emerging field of lignin biovalorization has not yet been studied. The red-pigmented basidiomycetous yeast strain Rhodosporidiobolus colostri DBVPG 10655 was examined for its potential to degrade five selected lignin-derived aromatic monomers (syringic acid, p-coumaric acid, 4-hydroxybenzoic acid, ferulic acid, and vanillic acid). The strain utilized p-coumaric acid, 4-hydroxybenzoic acid, and ferulic acid not only as the sole carbon source; full biodegradation occurred also in mixtures of multiple monomers. Vanillic acid was not utilized as the sole carbon source, but was degraded in the presence of p-coumaric acid, 4-hydroxybenzoic acid, and ferulic acid. Syringic acid was utilized neither as the sole carbon source nor in mixtures of compounds. Biodegradation of lignin-derived aromatic monomers was detected over a broad temperature range (1-25 °C), which is of ecological significance and of biotechnological relevance.

2.
Microorganisms ; 9(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34576815

ABSTRACT

Microbiota from Alpine forest soils are key players in carbon cycling, which can be greatly affected by climate change. The aim of this study was to evaluate the degradation potential of culturable bacterial strains isolated from an alpine deciduous forest site. Fifty-five strains were studied with regard to their phylogenetic position, growth temperature range and degradation potential for organic compounds (microtiter scale screening for lignin sulfonic acid, catechol, phenol, bisphenol A) at low (5 °C) and moderate (20 °C) temperature. Additionally, the presence of putative catabolic genes (catechol-1,2-dioxygenase, multicomponent phenol hydroxylase, protocatechuate-3,4-dioxygenase) involved in the degradation of these organic compounds was determined through PCR. The results show the importance of the Proteobacteria phylum as its representatives did show good capabilities for biodegradation and good growth at -5 °C. Overall, 82% of strains were able to use at least one of the tested organic compounds as their sole carbon source. The presence of putative catabolic genes could be shown over a broad range of strains and in relation to their degradation abilities. Subsequently performed gene sequencing indicated horizontal gene transfer for catechol-1,2-dioxygenase and protocatechuate-3,4-dioxygenase. The results show the great benefit of combining molecular and culture-based techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...