Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Vet Scand ; 58: 21, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-27004527

ABSTRACT

BACKGROUND: Gyrodactylus salaris is a monogenean, which has collapsed tens of wild Atlantic salmon populations. One of the means of preventing the spread of the parasite is the disinfection of the fishing equipment, which is used in the rivers having susceptible salmon populations. Little is known about the dosage of disinfectants against G. salaris. There are not standards for the testing of disinfectants against multicellular parasites. The present investigation developed a method to test disinfectants and examined the effectiveness of heated water and a commercially available disinfectant (Virkon S) in killing G. salaris. Individual G. salaris worms were followed under the microscope during treatment with heated water or Virkon S disinfectant blend. The logarithm of the time needed to kill the parasite was used as a dependent variable in linear regression. The upper 99.98 % prediction line for the dependent variable was used to obtain a value resembling the time needed for a 4 log reduction of the microbial pathogen, which is commonly used as a criterion for disinfectants. Also 6 log reduction was applied. RESULTS: Exposure to a relatively low temperature was found to kill the parasite. Even 5-50 min treatment (=10-100 times the 99.98 % upper prediction value) with heated water at 40 °C might be used. This would enable the utilisation of hot tap water in the disinfection of fishing gear. The present practice of 1 % Virkon S for 15 min was also found to kill the parasite. CONCLUSIONS: The follow-up of single parasites of a test population and the use of the calculated upper predictive line in the regression analysis offers a method to analyse the effects of disinfectants on parasites like G. salaris. The results of our tests give possibilities for using disinfection methods, which may be more acceptable by the fishermen than the present ones.


Subject(s)
Anthelmintics/pharmacology , Disinfectants/pharmacology , Fish Diseases/prevention & control , Hot Temperature/adverse effects , Peroxides/pharmacology , Platyhelminths/drug effects , Salmo salar , Sulfuric Acids/pharmacology , Animals , Fish Diseases/parasitology
2.
Parasit Vectors ; 2: 3, 2009 Jan 06.
Article in English | MEDLINE | ID: mdl-19126197

ABSTRACT

BACKGROUND: Recent studies have revealed expansion by an array of Filarioid nematodes' into the northern boreal region of Finland. The vector-borne nematode, Setaria tundra, caused a serious disease outbreak in the Finnish reindeer population in 2003-05. The main aim of this study was to understand the outbreak dynamics and the rapid expansion of S. tundra in the sub arctic. We describe the vectors of S. tundra, and its development in vectors, for the first time. Finally we discuss the results in the context of the host-parasite ecology of S. tundra in Finland RESULTS: Development of S. tundra to the infective stage occurs in mosquitoes, (genera Aedes and Anopheles). We consider Aedes spp. the most important vectors. The prevalence of S. tundra naturally infected mosquitoes from Finland varied from 0.5 to 2.5%. The rate of development in mosquitoes was temperature-dependent. Infective larvae were present approximately 14 days after a blood meal in mosquitoes maintained at room temperature (mean 21 C), but did not develop in mosquitoes maintained outside for 22 days at a mean temperature of 14.1 C. The third-stage (infective) larvae were elongated (mean length 1411 mum (SD 207), and width 28 mum (SD 2)). The anterior end was blunt, and bore two liplike structures, the posterior end slight tapering with a prominent terminal papilla. Infective larvae were distributed anteriorly in the insect's body, the highest abundance being 70 larvae in one mosquito. A questionnaire survey revealed that the peak activity of Culicidae in the reindeer herding areas of Finland was from the middle of June to the end of July and that warm summer weather was associated with reindeer flocking behaviour on mosquito-rich wetlands. CONCLUSION: In the present work, S. tundra vectors and larval development were identified and described for the first time. Aedes spp. mosquitoes likely serve as the most important and competent vectors for S. tundra in Finland. Warm summers apparently promote transmission and genesis of disease outbreaks by favouring the development of S. tundra in its mosquito vectors, by improving the development and longevity of mosquitoes, and finally by forcing the reindeer to flock on mosquito rich wetlands. Thus we predict that global climate change has the potential to promote the further emergence of Filarioid nematodes and the disease caused by them in subarctic regions.

3.
Syst Parasitol ; 69(2): 123-35, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18038199

ABSTRACT

Salmon Salmo salar L. and brown trout S. trutta L. juveniles were examined for the presence of accidental monogenean ectoparasitic species of Gyrodactylus Nordmann, 1832 in the Baltic and White Sea basins of Russian Karelia in order to estimate the frequency of host-switching attempts on an ecological timescale. To collect phylogeographical information and for exact species identification, the parasites were characterised by nuclear internal transcribed spacer sequences of rDNA (ITS) and, for some species, also by their mitochondrial DNA (CO1 gene) sequences. Four accidental Gyrodactylus species were observed on salmon and brown trout. A few specimens of G. aphyae Malmberg, 1957, the normal host of which is the Eurasian minnow Phoxinus phoxinus (L.), were observed on lake salmon from the Rivers Kurzhma (Lake Kuito, White Sea basin) and Vidlitsa (Lake Ladoga, Baltic basin). G. lucii Kulakovskaya, 1952, a parasite of the northern pike Esox lucius L., was observed on salmon in the Kurzhma. In the River Vidlitsa, two specimens of G. papernai Ergens & Bychowsky, 1967, normally on stone loach Barbatula barbatula (L.), were found on salmon. On anadromous White Sea salmon in the River Pulonga in Chupa Bay, a few salmon parr carried small colonies of G. arcuatus Bychowsky, 1933, which were shown to have originated from the local three-spined stickleback Gasterosteus aculeatus L. consumed as prey. No specimens of Gyrodactylus salaris Malmberg, 1957 were observed, although the Pulonga is the nearest salmon spawning river to the River Keret', which is heavily infected with introduced G. salaris. In the River Satulinoja, Lake Ladoga, three specimens of G. lotae Gusev, 1953, from burbot Lota lota (L.), were collected from a single brown trout S. trutta. All nonspecific gyrodactylid infections on salmonids were judged to be temporary, because only a few specimens were observed on each of the small number of infected fishes. The prevalence of endemic G. salaris was also low, only 1% (Nfish = 296) in Lake Onega and 0.7% (Nfish = 255) in Lake Ladoga, while brown trout specific Gyrodactylus species were not observed on any of the 429 trout examined from the Ladoga basin. The host-specific and unspecific burden of Gyrodactylus spp. on these 'glacial relict' populations of salmon and brown trout was very low, suggesting a generalised resistance against the co-evolved freshwater parasite community, or some kind of 'vaccination' effect. These hypotheses deserve further testing.


Subject(s)
DNA, Ribosomal Spacer/genetics , Platyhelminths/classification , Platyhelminths/isolation & purification , Salmonidae/parasitology , Animals , DNA, Helminth/chemistry , DNA, Helminth/genetics , DNA, Mitochondrial/genetics , DNA, Ribosomal Spacer/chemistry , Fish Diseases/parasitology , Molecular Sequence Data , Parasitic Diseases, Animal/parasitology , Phylogeny , Platyhelminths/genetics , Russia , Sequence Analysis, DNA , Sequence Homology
4.
Mol Ecol ; 16(24): 5234-45, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17971088

ABSTRACT

Host switching explains the high species number of ectoparasitic, viviparous, mainly parthenogenetic but potentially hermaphroditic flatworms of the genus Gyrodactylus. The starlike mitochondrial phylogeny of Gyrodactylus salaris suggested parallel divergence of several clades on grayling (also named as Gyrodactylus thymalli) and an embedded sister clade on Baltic salmon. The hypothesis that the parasite switched from grayling to salmon during the glacial diaspora was tested using a 493-bp nuclear DNA marker ADNAM1. The parasites on salmon in lakes Onega and Ladoga were heterozygous for divergent ADNAM1 alleles WS1 and BS1, found as nearly fixed in grayling parasites in the White Sea and Baltic Sea basins, respectively. In the Baltic salmon-specific mtDNA clade, the WS/BS heterozygosity was maintained in 23 out of the 24 local clones. The permanently heterozygous clade was endemic in the Baltic Sea basin, and it had accumulated variation in mtDNA (31 variable sites on 1600 bp) and in the alleles of the nuclear locus (two point mutations and three nucleotide conversions along 493 bp). Mendelian shuffling of the nuclear alleles between the local clones indicated rare sex within the clade, but the WS/BS heterozygosity was lost in only one salmon hatchery clone, which was heterozygous WS1/WS3. The Baltic salmon-specific G. salaris lineage was monophyletic, descending from a single historical hybridization and consequential host switch, frozen by permanent heterozygosity. A possible time for the hybridization of grayling parasite strains from the White Sea and Baltic Sea basins was during the Eemian interglacial 132 000 years bp. Strains having a separate divergent mtDNA observed on farmed rainbow trout, and on salmon in Russian lake Kuito were suggested to be clones derived from secondary and tertiary recombination events.


Subject(s)
Genetic Speciation , Host-Parasite Interactions , Hybridization, Genetic , Models, Biological , Platyhelminths/physiology , Salmon/parasitology , Alleles , Animals , Base Sequence , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Europe , Genetic Markers/genetics , Genotype , Nuclear Proteins/genetics , Oceans and Seas , Phenotype , Phylogeny , Platyhelminths/genetics , Salmon/genetics
5.
Hereditas ; 143(2006): 84-90, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17362339

ABSTRACT

Diploid parthenogenesis, with rare sex, is considered as the basic mode of reproduction among the hermaphroditic and viviparous Gyrodactylus. A particular strain of the monogenean parasite Gyrodactylus salaris (RBT clone) was recognized by an invariable, unique mitochondrial DNA haplotype in rainbow trout (Oncorhynchus mykiss) farms. The RBT clone was shown to be triploid and asexual by analyzing a 493 bp sequence of a nuclear DNA marker. Three alleles were present as heterozygous in all 237 individuals sampled in years 2001-2005 from five isolated Finnish farms. The triploid clone probably originated from a diploid oocyte fertilized by a non-self hermaphrodite, most probably in a fish farm. Identical mitochondrial COI gene (1606 bp) was also found in G. salaris parasites on landlocked salmon (Salmo salar) in two rivers draining to the lake Kuitozero, Russian Karelia. In the river Pisto, the clone was triploid, but the diagnostic "short" nuclear allele of the RBT clone was replaced by an allele typical for salmon specific parasites in the Lake Onega. The clone in the river Kurzhma was diploid, having lost the "short" allele, but still heterozygous for the other two alleles of the RBT clone. Evidently, the triploid parthenogenetic RBT clone had produced diploid oocytes, when (as a female) stimulated by a non-self mate in the new environment. The genetic reorganization coincided with a switch to the salmon host. Participation of triploids into the gene pool of the species is rarely reported in animals, and the triploidy is generally considered as an irreversible dead-end of the evolution. Liberalism in ploidy level may significantly add to the evolutionary options available for a parasite in ever-changing environments.


Subject(s)
Evolution, Molecular , Platyhelminths/genetics , Platyhelminths/physiology , Animals , Clone Cells/metabolism , Diploidy , Genetic Markers , Host-Parasite Interactions , Molecular Sequence Data , Oncorhynchus mykiss/parasitology , Platyhelminths/classification , Polyploidy , Reproduction , Salmon/parasitology , Species Specificity
6.
Int J Parasitol ; 34(4): 515-26, 2004 Mar 29.
Article in English | MEDLINE | ID: mdl-15013741

ABSTRACT

To test the hypothesis that host-switching can be an important step in the speciation of gyrodactylid monogenean flatworms, we inferred the phylogeny within a cluster of parasites morphologically close to Gyrodactylus salaris Malmberg 1957, collected from Atlantic, Baltic and White Sea salmon (Salmo salar), farmed rainbow trout (Oncorhynchus mykiss), and grayling (Thymallus thymallus) from Northern Europe. The internal transcribed spacer region of the nuclear ribosomal gene was sequenced for taxonomic identification. Parasites on grayling from the White Sea Basin differed from the others by one nucleotide (0.08%), the remainder were identical to the sequence published earlier from Norway (G. salaris on salmon), England (Gyrodactylus thymalli on grayling), and the Czech Republic (unidentified salaris/thymalli on trout). For increased resolution, 813 nucleotides of the mitochondrial COI gene of 88 parasites were sequenced and compared with 76 published sequences using phylogenetic analysis. For all tree building algorithms (NJ, MP), the parasites formed a star-like phylogeny of six definite sister clades, indicating nearly simultaneous radiation. Average K2P distances between clades were 1.8-2.6%, and internal mean distances 0.2-1.1%. The genetic distance to the nearest known relative, Gyrodactylus lavareti Malmberg, was 24%. A variable salmon-specific mitochondrial Clade I was observed both in the Baltic Basin and in pathogenic populations introduced to the Atlantic and White Sea coasts. An invariable Clade II was common in rainbow trout farms in Sweden, Denmark and Finland; the same haplotype was also infecting salmon in a landlocked population in Russian Karelia, and in Oslo fjord and Sognefjord in Norway. Four geographically vicariant sister clades were observed on graylings: Clade III in the Baltic Sea Basin; Clade IV in Karelian rivers draining to the White Sea; Clade V in Norwegian river draining to Swedish lake Vänern; and Clade VI in rivers draining to Oslo fjord. The pattern fitted perfectly with the postglacial history of grayling distribution. Widely sampled clades from salmon and Baltic grayling had basal haplotypes in populations, which were isolated early during the postglacial recolonisation. The divergence between the six clades was clear and linked with their hosts, but not wide enough to support a species status for them. Parasites from the Slovakian type population of G. thymalli were not available, so this result does not mean that G. salaris and G. thymalli are synonyms. It is suggested that the plesiomorphic host of the parasite cluster was grayling, and the switch to salmon occurred at least once when the continental ice isolated Baltic salmon in an eastern freshwater refugium, 130,000 years ago. At the same time, parasites on grayling were split geographically and isolated into several allopatric refugia. The divergence among the parasite clades allowed a tentative calibration of the evolutionary rate, leading to an estimate of the divergence of 13.7-20.3% per million years for COI coding mtDNA. The results supported the hypothesis that parallel to the allopatric mode, host switch and instant isolation by host specificity can be operated as a speciation mechanism.


Subject(s)
Fish Diseases/parasitology , Genes, Helminth , Platyhelminths/classification , Platyhelminths/genetics , Salmo salar/parasitology , Amino Acid Sequence , Animals , Atlantic Ocean , Base Sequence , Classification , Europe , Host-Parasite Interactions , Molecular Sequence Data , Rivers , Sequence Alignment , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...