Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 32(2): e2505, 2022 03.
Article in English | MEDLINE | ID: mdl-34866270

ABSTRACT

The use of indicator species in forest conservation and management planning can facilitate enhanced preservation of biodiversity from the negative effects of forestry and other uses of land. However, this requires detailed and spatially comprehensive knowledge of the habitat preferences and distributions of selected focal indicator species. Unfortunately, due to limited resources for field surveys, only a small proportion of the occurrences of focal species is usually known. This shortcoming can be circumvented by using modeling techniques to predict the spatial distribution of suitable sites for the target species. Airborne laser scanning (ALS) and other remote sensing (RS) techniques have the potential to provide useful environmental data covering systematically large areas for these purposes. Here, we focused on six bird of prey and woodpecker species known to be good indicators of boreal forest biodiversity values. We used known nest sites of the six indicator species based on nestling ringing records. Thus, the most suitable nesting sites of these species provide important information for biodiversity-friendly forest management and conservation planning. We developed fine-grained, that is, 96 × 96 m grid cell resolution, predictive maps across the whole of Finland of the suitable nesting habitats based on ALS and other RS data and spatial information on the distribution of important forest stands for the six studied biodiversity indicator bird species based on nesting-habitat suitability modeling, that is, the MaxEnt model. Habitat preferences of the study species, as determined by MaxEnt, were in line with the previous knowledge of species-habitat relations. The proportion of suitable habitats of these species in protected areas (PAs) was considerable, but our analysis also revealed many potentially high-quality forest stands outside PAs. However, many of these sites are increasingly threatened by logging because of increased pressures for using forests for bioeconomy and forest industry based on National Forest Strategy. Predicting habitat suitability based on information on the nest sites of indicator species provides a new tool for systematic conservation planning over large areas in boreal forests in Europe, and a corresponding approach would also be feasible and recommendable elsewhere where similar data are available.


Subject(s)
Conservation of Natural Resources , Forests , Animals , Biodiversity , Birds , Conservation of Natural Resources/methods , Ecosystem , Forestry/methods
2.
Sci Rep ; 10(1): 1678, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32015382

ABSTRACT

Climate change velocity is an increasingly used metric to assess the broad-scale climatic exposure and climate change induced risks to terrestrial and marine ecosystems. However, the utility of this metric in conservation planning can be enhanced by determining the velocities of multiple climatic drivers in real protected area (PA) networks on ecologically relevant scales. Here we investigate the velocities of three key bioclimatic variables across a nation-wide reserve network, and the consequences of including fine-grained topoclimatic data in velocity assessments. Using 50-m resolution data describing present-day and future topoclimates, we assessed the velocities of growing degree days, the mean January temperature and climatic water balance in the Natura 2000 PA network in Finland. The high-velocity areas for the three climate variables differed drastically, indicating contrasting exposure risks in different PAs. The 50-m resolution climate data revealed more realistic estimates of climate velocities and more overlap between the present-day and future climate spaces in the PAs than the 1-km resolution data. Even so, the current temperature conditions were projected to disappear from almost all the studied PAs by the end of this century. Thus, in PA networks with only moderate topographic variation, far-reaching climate change induced ecological changes may be inevitable.

SELECTION OF CITATIONS
SEARCH DETAIL
...