Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 32(24): 5415-5421.e3, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36446353

ABSTRACT

Octopuses are remarkable in their ability to use many arms together during behavior (e.g., see Levy et al., 1 Mather,2 Byrne et al.,3 and Hanlon et al.4). Arm responses and multi-arm coordination can occur without engagement of major brain regions,5 which indicates the importance of local proprioceptive responses and peripheral connections. Here, we examine the intramuscular nerve cords (INCs),6,7,8,9 the key proprioceptive anatomy in the arms. INCs are understood to include proprioceptive neurons, multipolar neurons, and motoneurons (reviewed by Graziadei10) and are thought to contribute to structuring whole-arm movement.11 There are four INCs running the full length of each arm (e.g., see Guérin-Ganivet,6 Martoja and May,8 and Graziadei9); we focused on the pair closest to the suckers, called the oral INCs. In tracking the oral INCs, we found that they extend proximally and continue beyond the arm, through the arm's base. Each oral INC bypasses two adjacent arms and is continuous with the nearer oral INC of the third arm over. As a result, an arm connects through oral INC pathways to arms that are two arms away to the right and left of it. In addition to connecting distant arms, nerve fibers project from the central region of the INCs, suggesting function in local tissues. The other two INCs, paired aboral INCs, also extend proximally beyond the arm's base with trajectories suggestive of the oral INC pattern. These data identify previously unknown regions of the INCs that link distant arms, creating anatomical connections. They suggest potential INC proprioceptive function in extra-arm tissues and contribute to an understanding of embodied organization for octopus behavioral control.12,13,14,15.


Subject(s)
Octopodiformes , Animals , Octopodiformes/physiology , Movement , Motor Neurons , Brain , Signal Transduction
2.
Nature ; 542(7642): 475-478, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28192787

ABSTRACT

The maternal-to-zygotic transition (MZT) is one of the most profound and tightly orchestrated processes during the early life of embryos, yet factors that shape the temporal pattern of vertebrate MZT are largely unknown. Here we show that over one-third of zebrafish maternal messenger RNAs (mRNAs) can be N6-methyladenosine (m6A) modified, and the clearance of these maternal mRNAs is facilitated by an m6A-binding protein, Ythdf2. Removal of Ythdf2 in zebrafish embryos decelerates the decay of m6A-modified maternal mRNAs and impedes zygotic genome activation. These embryos fail to initiate timely MZT, undergo cell-cycle pause, and remain developmentally delayed throughout larval life. Our study reveals m6A-dependent RNA decay as a previously unidentified maternally driven mechanism that regulates maternal mRNA clearance during zebrafish MZT, highlighting the critical role of m6A mRNA methylation in transcriptome switching and animal development.


Subject(s)
Adenosine/analogs & derivatives , Embryonic Development/genetics , RNA Stability , RNA, Messenger, Stored/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zygote/metabolism , Adenosine/metabolism , Animals , Female , Male , RNA, Messenger, Stored/chemistry , RNA, Messenger, Stored/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Time Factors , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...