Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 118(7): 2585-2596, 2021 07.
Article in English | MEDLINE | ID: mdl-33818762

ABSTRACT

Silk fibroin (SF) from Bombyx mori has superior properties as both a textile and a biomaterial, and has been used to functionalize the surfaces of various medical inorganic materials including titanium (Ti). In this study, we endowed SF with reversible binding ability to Ti by embedding a titanium binding motif (minTBP-1 and RKLPDA). Artificial SF proteins were first created by conjugating gene cassettes for SF motif (AGSGAG) and minTBP-1 motif with different ratios, which have been shown to bind reversibly to Ti surfaces in quartz crystal microbalance analyses. Based on these results, the functionalized SF (TiBP-SF) containing the designed peptide [TS[(AGSGAG)3 AS]2 RKLPDAS]8 was prepared from the cocoon of transgenic B. mori, which accelerates the ossific differentiation of MC3T3-E1 cells when coated on titanium substrates. Thus, TiBP-SF presents an alternative for endowing the surfaces of titanium materials with osseointegration functionality, which would allow the exploration of potential applications in the medical field.


Subject(s)
Cell Differentiation , Coated Materials, Biocompatible/chemistry , Fibroins/chemistry , Osteogenesis , Titanium/chemistry , Amino Acid Motifs , Animals , Bombyx , Cell Line , Fibroins/genetics , Mice
2.
Protein Expr Purif ; 176: 105723, 2020 12.
Article in English | MEDLINE | ID: mdl-32768455

ABSTRACT

Silkworms are economically important insects that have the ability to produce large amounts of silk. They have mass breeding methods and silk glands, which are specialized tissues that secrete silk fibroin and sericin. Thus, the production of recombinant proteins in a transgenic silkworm system is a promising approach. We developed a silkworm, Bombyx mori, as a host expression insect for recombinant proteins and successfully produced different proteins including antibodies, glycoproteins, and membrane receptors. The thyroid hormone receptor (TR) is a regulatory factor for many physiological phenomena. It is a lipophilic protein that has DNA-binding and ligand-binding domains. Based on our previous experiences, it was inferred that the recombinant TR easily formed aggregates and precipitates which is potentially due to an unstructured hinge domain. We applied the silkworm expression system to produce mice TRß1 that was fused with glutathione S-transferase. Using 160 larvae, the yield of the recombinant GST-TRß was approximately 4 mg, and the purified GST-TRß completely retained its physiological activity. Our results indicated that the recombinant TRß was secreted extracellularly using the silk fibroin signal peptide sequence. Moreover, we found that the expression system of silkworms was applicable to nuclear proteins.


Subject(s)
Animals, Genetically Modified , Bombyx , Thyroid Hormone Receptors beta , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Bombyx/genetics , Bombyx/metabolism , DNA/chemistry , DNA/metabolism , Mice , Protein Binding , Thyroid Hormone Receptors beta/biosynthesis , Thyroid Hormone Receptors beta/chemistry , Thyroid Hormone Receptors beta/genetics , Thyroid Hormone Receptors beta/isolation & purification
3.
Exp Ther Med ; 15(3): 2512-2518, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29563979

ABSTRACT

Recent clinical trials with the aim of developing tumor antigen (TA)-specific cancer vaccines against a number of malignancies have focused on the identification of TAs presented by tumor cells and recognized by T cells. In the present study, the TA melanoma antigen family A4 (MAGE-A4) protein was produced using a transgenic (TG) silkworm system. Using in vitro stimulation, it was subsequently determined whether MAGE-A4 protein induced MAGE-A4-specific T cells from peripheral blood mononuclear cells of healthy donors. TG silkworm lines expressing a MAGE-A4 gene under an upstream activating sequence (UAS) were mated with those expressing a yeast transcription activator protein (GAL4) at the middle silk glands (MSGs) and embryos that harbored both the GAL4 and UAS constructs were selected. Recombinant MAGE-A4 protein was extracted from the MSGs of TG silkworms and evaluated using SDS-PAGE and western blot analysis. It was observed that MAGE-A4 produced by the TG silkworm system successfully induced MAGE-A4-specific CD4+ T cell responses. Furthermore, MAGE-A4-specific CD4+ T cells recognized antigen-presenting cells when pulsed with a MAGE-A4+ tumor cell lysate. The present data suggests that recombinant tumor antigen production using the TG silkworm system may be a novel tool in the preparation of cancer vaccines.

4.
Eur J Pharmacol ; 814: 130-137, 2017 Nov 05.
Article in English | MEDLINE | ID: mdl-28823924

ABSTRACT

GPBA is a G protein-coupled receptor that is activated by bile acids. Because activation of GPBA leads to increased cAMP levels and secretion of incretins and insulin, GPBA has been proposed as a promising drug target for the treatment of metabolic syndrome. Previously, we have developed a ligand-screening system to identify novel agonists of GPBA by means of a fusion protein of GPBA with G protein stimulatory α subunit (Gsα) and by a [35S]GTPγS-binding assay. To express the GPBA-Gsα fusion protein, transgenic silkworms were employed in this study, and cell membrane fractions were prepared from their fat body or pupae. We applied them to the screening of a chemical library that contains 10,625 compounds from the RIKEN Natural Products Depository (NPDepo). Eventually, a unique partial agonist, GUM2, was successfully identified. Our results indicated that the GPCR-Gα fusion proteins were beneficial for ligand identification and that the transgenic silkworms were useful for large-scale production of GPCRs. In HEK293 cells transiently expressing GPBA, GUM2 showed 50% effective concentration (EC50) of 3.5 ± 2.4µM and induced GPBA internalization as effectively as did an endogenous agonist, TLC. We also confirmed that GUM2 stimulates insulin secretion in MIN6 cells. Moreover, a single 2mg/kg dose of GUM2 significantly reduced blood glucose levels in mice during an intraperitoneal glucose tolerance test even though GUM2 is only a partial agonist with a low intrinsic activity. We concluded that GUM2 is a good candidate for research on GPBA signaling under physiological conditions and for the development of GPBA-targeting therapeutic compounds.


Subject(s)
Biological Products/pharmacology , Blood Glucose/metabolism , Glucose Tolerance Test , Receptors, G-Protein-Coupled/agonists , Animals , HEK293 Cells , Humans , Insulin/metabolism , Insulin Secretion , Intracellular Space/drug effects , Intracellular Space/metabolism , Larva/metabolism , Mice , Pupa/metabolism
5.
Eur J Pharmacol ; 767: 193-200, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26476280

ABSTRACT

Opioids are the most effective and widely used drugs for pain treatment. Morphine is an archetypal opioid and is an opioid receptor agonist. Unfortunately, the clinical usefulness of morphine is limited by adverse effects such as analgesic tolerance and addiction. Therefore, it is important to study the development of novel opioid agonists as part of pain control. The analgesic effects of opioids are mediated by three opioid receptors, namely opioid µ-, δ-, and κ-receptors. They belong to the G protein-coupled receptor superfamily and are coupled to Gi proteins. In the present study, we developed a ligand screening system to identify novel opioid µ-receptor agonists that measures [(35)S]GTPγS binding to cell membrane fractions prepared from the fat body of transgenic silkworms expressing µ-receptor-Gi1α fusion protein. We screened the RIKEN Natural Products Depository (NPDepo) chemical library, which contains 5848 compounds, and analogs of hit compounds. We successfully identified a novel, structurally unique compound, that we named GUM1, with agonist activity for the opioid µ-receptor (EC50 of 1.2 µM). The Plantar Test (Hargreaves' Method) demonstrated that subcutaneous injection of 3mg/kg of GUM1 into wild-type rats significantly extended latency time. This extension was also observed in a rat model of morphine tolerance and was inhibited by pre-treatment of naloxone. The unique molecular skeleton of GUM1 makes it an attractive molecule for further ligand-opioid receptor binding studies.


Subject(s)
Benzylamines/agonists , Benzylamines/pharmacology , Biological Products/pharmacology , Pyrans/agonists , Pyrans/pharmacology , Receptors, Opioid, mu/agonists , Analgesics, Opioid/agonists , Analgesics, Opioid/pharmacology , Animals , Animals, Genetically Modified , Bombyx , Drug Tolerance , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Male , Pain Measurement/drug effects , Radioligand Assay , Rats , Receptors, Opioid, mu/genetics , Sulfur Radioisotopes/metabolism
6.
J Mater Chem B ; 3(35): 7109-7116, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-32262713

ABSTRACT

Bombyx mori silk fibroin (SF) was successfully used for vascular grafts implanted in rats or dogs. Current transgenic technology can be developed to produce SF with improved properties. In this study, the vascular endothelial growth factor (VEGF) or the repeated fibronectin-derived sequence, TGRGDSPAS, and arginylglycylaspartic acid (RGD) were introduced into the SF heavy chain to improve its properties. A blood compatibility assay was performed to study lactose dehydrogenase (LDH) activity for both transgenic and wild type SF. Growth of human umbilical endothelial cells (HUVECs) showed greater enhancement of cellularization behaviour for the transgenic SF samples (VEGF and RGD) than for the wild type (WT) SF. VEGF SF also showed lower platelet adhesion than the RGD SF and WT SF. An in vivo implantation study supported these in vitro results. In particular, early endothelialisation was observed for VEGF transgenic SF, including the occurrence of native tissue organization at three months after implantation in rat abdominal aorta.

7.
J Mater Chem B ; 2(42): 7375-7383, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-32261962

ABSTRACT

Interest in vascular grafts has recently grown because more patients are undergoing procedures that involve these grafts. However, smaller grafts with diameters <6 mm made from conventional biomaterials are associated with a high incidence of thrombosis, and therefore the development of improved materials suitable for small vascular grafts is highly desirable. In this paper, four kinds of recombinant Bombyx mori silk fibroins were prepared using transgenic techniques for use as silk vascular graft with a diameter of <6 mm. The peptide sequence TS(CDPGYIGSRAS)8 derived from the laminin B1 chain or the combination of two kinds of sequences, TS(CDPGYIGSRAS)8 and (TGRGDSPAS)8 derived from fibronectin, was incorporated into the light (L)-chain or the heavy (H)-chain of the silk fibroin. The fractions of the incorporated peptide sequences range from 0.8% to 7.2% by weight in the recombinant silk fibroins. This incorporation causes a very small increase in the random coil fraction of silk fibroin and a decrease in the tensile strength. Compared with native silk fibroin, the adhesive activities of mouse endothelial and smooth muscle cells increase significantly with the recombinant silk fibroin films incorporating only the TS(CDPGYIGSRAS)8 sequence independent of the L- or H-chains. A similar tendency was observed for the high migration activities of the endothelial cells in vitro and also the longer migration distance of the endothelial cell from the anastomotic part of rat abdominal aorta in vivo when this recombinant silk fibroin was used as a coating material for the silk graft. In view of the results, the recombinant silk fibroin incorporating the laminin peptide sequence can be potentially used as a vascular graft material.

8.
J Biomater Sci Polym Ed ; 21(3): 395-411, 2010.
Article in English | MEDLINE | ID: mdl-20178693

ABSTRACT

Regenerated silk fibroin fibers from the cocoons of silkworm, Bombyx mori, were prepared with hexafluoro solvents, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) or hexafluoroacetone-trihydrate (HFA), as dope solvents and methanol as coagulation solvent. The regenerated fiber prepared from the HFIP solution showed slightly larger tensile strength when the draw ratio is 1:3 than that of native silk fiber, but the strength of the regenerated fiber with draw ratio 1:3 from the HFA solution is much lower than that of native silk fiber. This difference in the tensile strength of the regenerated silk fibers between two dope solvents comes from the difference in the long-range orientation of the crystalline region rather than that of short-range structural environment such as the fraction of beta-sheet structure. The increase in the biodegradation was observed for the regenerated silk fiber compared with native silk fiber. Preparations of regenerated silk fibroin fibers containing spider silk sequences were obtained by mixing silk fibroins and silk-like proteins with characteristic sequences from a spider, Naphila clavipes, to produce drag-line silk in E. coli in the fluoro solvents. A small increase in the tensile strength was obtained by adding 5% (w/w) of the silk-like protein to the silk fibroin. The production of silk fibroin fibers with these spider silk sequences was also performed with transgenic silkworms. Small increase in the tensile strength of the fibers was obtained without significant change in the elongation-at-break.


Subject(s)
Bombyx/chemistry , Bombyx/genetics , Fibroins/chemistry , Fibroins/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified , Bombyx/metabolism , Fibroins/metabolism , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Peptide Hydrolases/metabolism , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Stress, Mechanical , Tensile Strength , X-Ray Diffraction
9.
J Biochem ; 145(1): 37-42, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18984628

ABSTRACT

The production of useful quantities of G protein-coupled receptors is a major problem not only for screening of various drug compounds but also in performing structural biology studies. To solve this problem, we investigated the possibility of using transgenic silkworms for the production of these receptors. Using the human mu-opioid receptor gene, we constructed three transgenic silkworm strains that produced mu-opioid receptors. The silkworms expressed significant amounts of the receptor in the fat body and silk gland. The product was evaluated using a saturation ligand-binding assay. The expressed receptor exhibited ligand affinity similar to that of an authentic sample, and the yield from the transgenic silkworm was comparable to that obtained using an Sf9-baculovirus expression system. As the mass rearing of transgenic silkworms has already been established, the silkworms can be adapted for production of large quantities of receptors.


Subject(s)
Bombyx/genetics , Receptors, Opioid, mu/biosynthesis , Receptors, Opioid, mu/genetics , Recombinant Proteins/biosynthesis , Animals , Animals, Genetically Modified/metabolism , Baculoviridae/metabolism , Humans , Models, Genetic , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...