Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 14(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37512771

ABSTRACT

We present a sessile droplet manipulation platform that enables the formation and transport of a droplet on a light-absorbing surface via local laser-beam irradiation. The mechanism relies on solutocapillary Marangoni flow arising from a concentration gradient in a binary mixture liquid. Because the mixture is strongly confined in a two-dimensional slit with a spacing of a few micrometers, the wetting film is stably sustained, enabling the rapid formation, deformation, and transport of a sessile droplet. In addition, to sustain the droplet in the absence of laser irradiation, we developed a method to bridge the droplet between the top and bottom walls of the slit. The bridge is stably sustained because of the hydrophilicity of the slit wall. Splitting and merging of the droplet bridges are also demonstrated.

2.
Materials (Basel) ; 13(23)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291745

ABSTRACT

We attempted to modify the monoclinic-rutile structural phase transition temperature (Ttr) of a VO2 thin film in situ through stress caused by amorphous-crystalline phase change of a chalcogenide layer on it. VO2 films on C- or R-plane Al2O3 substrates were capped by Ge2Sb2Te5 (GST) films by means of rf magnetron sputtering. Ttr of the VO2 layer was evaluated through temperature-controlled measurements of optical reflection intensity and electrical resistance. Crystallization of the GST capping layer was accompanied by a significant drop in Ttr of the VO2 layer underneath, either with or without a SiNx diffusion barrier layer between the two. The shift of Ttr was by ~30 °C for a GST/VO2 bilayered sample with thicknesses of 200/30 nm, and was by ~6 °C for a GST/SiNx/VO2 trilayered sample of 200/10/6 nm. The lowering of Ttr was most probably caused by the volume reduction in GST during the amorphous-crystalline phase change. The stress-induced in in situ modification of Ttr in VO2 films could pave the way for the application of nonvolatile changes of optical properties in optoelectronic devices.

3.
Langmuir ; 35(19): 6403-6408, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31008609

ABSTRACT

Optical techniques have been actively studied for manipulating nano- to microsized objects. However, long-range attraction and rapid transport of particles within thin quasi-two-dimensional systems are difficult because of the weak thermophoretic forces. Here, we introduce an experimental system that can rapidly generate quasi-two-dimensional colloidal crystals in deionized water, sandwiched between two hard plates. When a pulsed laser is irradiated on a chalcogenide phase-change material spattered on one side of the plates, the induced Marangoni-like flow causes a colloidal self-assembly in the order of tens of micrometers within the laser spot, with a transport velocity of a few tens of micrometers per second. This is due to the large thermal gradient induced by chalcogenide characteristics of high laser absorption and low thermal conductivity, and a strong hydrodynamic slip flow at the hydrophobic chalcogenide interface. Moreover, the colloidal crystals exhibit various lattice structures, depending on the laser intensity and chamber distance. For a certain range of the chamber distance, the colloidal crystal phases can be alternated by tuning the laser intensity in real time. Our system forms and deforms quasi-two-dimensional colloidal crystals at an on-demand location on a GeSbTe substrate.

4.
Opt Express ; 25(22): 26825-26831, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092167

ABSTRACT

The functionality of a pulse timing discriminator, which is commonly required in optical communication systems and artificial neuromorphic engineering, was implemented into chalcogenide phase-change materials. GeSbTe (GST) and GeCuTe (GCT), which exhibit opposite refractive index behavior in their respective crystalline and amorphous phases, were employed. A GST/GCT double layer enabled the order of arrival of two counter-propagating femtosecond pulses to be encoded as a difference in the degree of amorphization of the GCT layer, i.e., either a brighter or darker contrast of the amorphized area with respect to the crystalline background. Nonthermal ultrafast amorphization contributed to a picosecond time resolution in the discrimination of the pulse arrival order.

5.
J Phys Condens Matter ; 29(40): 405001, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28703712

ABSTRACT

We attempted to observe pump-probe scanning tunneling microscopy (STM)-light emission (LE) from a VO2 thin film grown on a rutile TiO2(0 0 1) substrate, with an Ag tip fixed over a semiconducting domain. Laser pulses from a Ti:sapphire laser (wavelength 920 nm; pulse width less than 1.5 ps) irradiated the tip-sample gap as pump and probe light sources. With a photon energy of 2.7 eV, suggesting phase transition from semiconducting monoclinic (M) to metallic rutile (R) phases in relation to the electronic band structure, faint LE was observed roughly 30 ps after the irradiation of the pump pulse, followed by retention for roughly 20 ps. The incident energy fluence of the pump pulse at the gap was five orders of magnitude lower than the threshold value for reported photo-induced M-R phase transition. The mechanism that makes it possible to reduce the threshold fluence is discussed.

6.
J Phys Condens Matter ; 28(38): 385002, 2016 09 28.
Article in English | MEDLINE | ID: mdl-27460183

ABSTRACT

We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.0 eV occurs selectively from R-phase domains of VO2, while no STM-LE was observed from M-phase. The mechanism of STM-LE from R-phase VO2 was determined to be an interband transition process rather than inverse photoemission or inelastic tunneling processes.

7.
Sci Rep ; 5: 13530, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26314613

ABSTRACT

Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization.

8.
Langmuir ; 29(42): 13111-20, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24063697

ABSTRACT

In order to develop a biosensing system with waveguide-mode sensor, fabrication of a biosensing interface on the silica surface of the sensing chip was carried out using triethoxysilane derivatives with anti-leptin antibody. Triethoxysilane derivatives bearing succinimide ester and oligoethylene glycol moieties were synthesized to immobilize the antibody and to suppress nonspecific adsorption of proteins, respectively. The chip modified with triethoxysilane derivatives bearing oligoethylene glycol moiety suppressed nonspecific adsorption of proteins derived from human serum effectively by rinse with PBS containing surfactant (0.05% Tween 20). On the other hand, it was confirmed that antibody was immobilized on the chip by immersion into antibody solution to show response of antigen-antibody reaction, where the chip was modified with triethoxysilane derivatives bearing succinimide ester moiety. When the interface was fabricated with antibody and a mixture of triethoxysilane derivatives bearing succinimide ester and oligoethylene glycol moieties, the response of antigen-antibody reaction depended on composition of the mixture and enhanced with the increase of ratio for triethoxysilane derivatives bearing succinimide ester moiety reflecting the antibody concentration immobilized on the chip. While introduction of excess triethoxysilane derivatives bearing succinimide ester moiety induced nonspecific adsorption of proteins derived from human serum, the immobilized antibody on the chip kept its activity after 1-month storage in a refrigerator. Taking into consideration those factors, the biosensing interface was fabricated using triethoxysilane derivatives with anti-leptin antibody to examine performance of the waveguide-mode sensor. It was found that the detection limits for human leptin were 50 ng/mL in PBS and 100 ng/mL in human serum. The results demonstrate that the waveguide-mode sensor powered by the biosensing interface fabricated with those triethoxysilane derivatives and antibody has potential to detect several tens of nanograms per milliliter of biomarkers in human serum with an unlabeled detection method.


Subject(s)
Antibodies/chemistry , Biosensing Techniques , Leptin/analysis , Silanes/chemical synthesis , Adsorption , Animals , Antigen-Antibody Reactions , Biosensing Techniques/instrumentation , Cattle , Ethylene Glycol/chemistry , Humans , Recombinant Proteins/analysis , Silanes/chemistry , Silicon Dioxide/chemistry , Succinimides/chemistry , Surface Properties
9.
Langmuir ; 29(21): 6361-8, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23668922

ABSTRACT

In order to scrutinize potential of trialkoxysilanes to form close-packed monolayer, surface modification of silicon oxide was carried out with the trialkoxysilanes bearing a ferrocene moiety for analysis by electrochemical methods. As it was found that hydrogen-terminated silicon reacts with trialkoxysilane through natural oxidation in organic solvents, where the silicon oxide layer is thin enough to afford conductivity for electrochemical analysis, hydrogen-terminated silicon wafer was immersed in trialkoxysilane solution for surface modification without oxidation treatment. Cyclic voltammetry measurements to determine surface concentrations of the immobilized ferrocene-silane on silicon surface were carried out with various temperature, concentration, solvent, and molecular structure, while the blocking effect in the cyclic voltammogram was investigated to obtain insight into density leading to the close-packed layer. The results suggested that a monolayer modification tended to occur under milder conditions when the ferrocene-silane had a longer alkyl chain, and formation of a close-packed layer to show significant blocking effect was observed. However, the surface modification proceeded even when surface concentration of the immobilized ferrocene-silane was greater than that expected for the monolayer. On the basis of these tendencies, the surface of silicon oxide modified with trialkoxysilane is considered to be a partial multilayer rather than monolayer although a close-packed layer is formed. This result is supported by the comparison with carbon surface modified with ferrocene-diazonium, in which a significant blocking effect was observed when surface concentrations of the immobilized ferrocene moiety are lower than that for silicon oxide modified with ferrocene-silane.


Subject(s)
Ferrous Compounds/chemistry , Silanes/chemistry , Silicon Dioxide/chemistry , Metallocenes , Molecular Structure , Surface Properties
10.
Opt Express ; 20(9): 10283-94, 2012 Apr 23.
Article in English | MEDLINE | ID: mdl-22535118

ABSTRACT

We report a multi-mode interference-based optical gate switch using a Ge(2)Sb(2)Te(5) thin film with a diameter of only 1 µm. The switching operation was demonstrated by laser pulse irradiation. This switch had a very wide operating wavelength range of 100 nm at around 1575 nm, with an average extinction ratio of 12.6 dB. Repetitive switching over 2,000 irradiation cycles was also successfully demonstrated. In addition, self-holding characteristics were confirmed by observing the dynamic responses, and the rise and fall times were 130 ns and 400 ns, respectively.


Subject(s)
Germanium/chemistry , Optical Devices , Signal Processing, Computer-Assisted/instrumentation , Silicon/chemistry , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis
11.
Opt Express ; 17(19): 16947-56, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19770913

ABSTRACT

We have proposed a novel grating-based optical reflection switch using a phase change material (PCM). The device switches on/off light or shifts the light propagation direction by switching the PCM grating between its amorphous and crystalline states. Thus, the switching status is non-volatile and the device is promising for realizing low power consumption. The device structure was designed and optimized by numerical simulations to obtain high switching efficiency. It is shown that there exists a parameter window where high efficiency is achievable. The static switching characteristics were confirmed by finite-difference time-domain (FDTD) simulations. The design scheme can also be applied to other planar dielectric gratings.

12.
Opt Lett ; 28(19): 1805-7, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-14514107

ABSTRACT

Optical features of a PtO2 mask layer in a superresolution near-field structure are investigated in detail by use of the Z-scan technique. The high photothermal stability of the PtO2 mask is revealed, and a phenomenon in which laser-irradiated PtO2 decomposes to yield Pt particles is confirmed. We also find a physical change in the mask layer that accompanies the chemical decomposition. Microscopic observations and atomic force microscope studies support the theory that the physical deformation is induced by the decomposition of PtO2. It is clear that the optical nonlinear responses of the PtO2 mask layer result from two mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...