Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Comb Sci ; 19(6): 365-369, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28481501

ABSTRACT

We conducted a high-throughput investigation of the fundamental properties of (Mg,Hf)xAl1-xN thin films (0 < x < 0.24) aiming for developing high-performance AlN-based piezoelectric materials. For the high-throughput investigation, we prepared composition-gradient (Mg,Hf)xAl1-xN films grown on a Si(100) substrate at 600 °C by cosputtering AlN and MgHf targets. To measure the properties of the various compositions at different positions within a single sample, we used characterization techniques with spatial resolution. X-ray diffraction (XRD) with a beam spot diameter of 1.0 mm verified that Mg and Hf had substituted into the Al sites and caused an elongation of the c-axis of AlN from 5.00 Å for x = 0 to 5.11 Å for x = 0.24. In addition, the uniaxial crystal orientation and high crystallinity required for piezoelectric materials to be used as application devices were confirmed. The piezoelectric response microscope indicated that this c-axis elongation increased the piezoelectric coefficient almost linearly from 1.48 pm/V for x = 0 to 5.19 pm/V for x = 0.24. The dielectric constants of (Mg,Hf)xAl1-xN were investigated using parallel plate capacitor structures with ∼0.07 mm2 electrodes and showed a slight increase by substitution. These results verified that (Mg,Hf)xAl1-xN is a promising material for piezoelectric-based application devices, especially for vibrational energy harvesters.


Subject(s)
Aluminum/chemistry , Hafnium/chemistry , Magnesium/chemistry , Crystallization , High-Throughput Screening Assays , Materials Testing , Static Electricity , Vibration , X-Ray Diffraction
2.
Article in English | MEDLINE | ID: mdl-26559628

ABSTRACT

The first MgZr co-doped AlN-based vibrational energy harvester (VEH) is presented. (MgZr)AlN, which is a new class of doped AlN, provides high piezoelectricity and cost advantage. Using 13%-(MgZr)-doped AlN for micromachined VEHs, maximum output power of 1.3 µW was achieved with a Q-factor of 400 when resonant frequency, vibration acceleration, load resistance were 792 Hz, 8 m/s(2), and 1.1 MΩ, respectively. Normalized power density was 8.1 kW·g(-2)·m(-3). This was one of the highest values among the currently available piezoelectric VEHs.

SELECTION OF CITATIONS
SEARCH DETAIL
...