Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 21558, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33299047

ABSTRACT

In nanocomposites, the adhesion between nanofillers and the polymeric matrix is key to the mechanical properties. The strength and spatial distribution of the adhesive layer around the nanofillers are important, particularly the presence of chemical bonding between the nanofillers and matrix. In this work, we studied a styrene-butadiene rubber composite filled with silica nanoparticles to visualize the spatial distribution of the adhesive layer. A silane coupling agent (SCA) was added to the nanocomposite for strong adhesion. The reaction involving the SCA on the silica surface was investigated by scanning transmission electron microscopy combined with electron energy-loss spectroscopy. Si-L2,3 spectra of the silica-filled rubber nanocomposite without the SCA were the same around the nanofillers, whereas in the nanocomposite containing the SCA the spectra were position-dependent. The spectra were fitted with the intensity profiles of the Si-L2,3 spectra of silica and SCA by multiple linear least-squares fitting. The fitting coefficients of silica and SCA were used to map the spatial distribution of the chemical bonding between silica and rubber chains. Chemical bonding was observed around the silica nanoparticles but not in the SBR matrix region, providing direct evidence of the reinforcing mechanism in the silica-filled rubber nanocomposite.

2.
Ultramicroscopy ; 151: 178-190, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25498142

ABSTRACT

Atomic resolution has been obtained using environmental transmission electron microscopy (ETEM) by installing a spherical aberration corrector (Cs-corrector) on the objective lens. Simultaneously, the technology for controlling the environment around a specimen in ETEM has advanced significantly in the past decade. Quantification methodology has recently been established for deriving relevant experimental data in catalyst materials from substantial and systematic ETEM observation at the atomic scale. With this background, this paper summarizes aspects of the evolutional microscopy technique: necessary conditions for atomic resolution in ETEM; reduction of the scattering of electrons by the medium surrounding a specimen; and an environmental cell for structural imaging of a crystalline specimen. The high spatial resolution of a Cs-corrected ETEM is demonstrated for different observation conditions. After statistical analysis combined with numerical image analysis of ETEM data is briefly described, the recent applications of the Cs-corrected ETEM to catalyst materials are reviewed. For gold nanoparticulate catalysts, the structural information on the reaction sites and adsorption sites are deduced. For Pt nanoparticulate catalysts, ETEM studies elucidate the correlation between the catalytic activity and the morphology of the nanoparticles. These studies also reveal oxidation and reduction on the topmost Pt surface layer at the atomic scale. Finally, current issues and the future perspectives of Cs-corrected ETEM are summarized, including the reproducibility of ETEM observation data, the control of environments, the critical evaluation of electron irradiation effects, the full implementation of transmission electron microscopy technology in ETEM, and the safety issues for an ETEM laboratory.

3.
Nano Lett ; 13(7): 3073-7, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23786232

ABSTRACT

Aberration-corrected environmental transmission electron microscopy (ETEM) proved that catalytically active gold nanoparticles (AuNPs) move reversibly and stepwise by approximately 0.09 nm on a cerium oxide (CeO2) support surface at room temperature and in a reaction environment. The lateral displacements and rotations occur back and forth between equivalent sites, indicating that AuNPs are loosely bound to oxygen-terminated CeO2 and may migrate on the surface with low activation energy. The AuNPs are likely anchored to oxygen-deficient sites. Observations indicate that the most probable activation sites in gold nanoparticulate catalysts, which are the perimeter interfaces between an AuNP and a support, are not structurally rigid.

4.
Angew Chem Int Ed Engl ; 51(31): 7729-33, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22730239

ABSTRACT

Despite the fragility of TiO(2) under electron irradiation, the intrinsic structure of Au/TiO(2) catalysts can be observed by environmental transmission electron microscopy. Under reaction conditions (CO/air 100 Pa), the major {111} and {100} facets of the gold nanoparticles are exposed and the particles display a polygonal interface with the TiO(2) support bounded by sharp edges parallel to the 〈110〉 directions.

5.
Science ; 335(6066): 317-9, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22267808

ABSTRACT

Understanding how molecules can restructure the surfaces of heterogeneous catalysts under reaction conditions requires methods that can visualize atoms in real space and time. We applied a newly developed aberration-corrected environmental transmission electron microscopy to show that adsorbed carbon monoxide (CO) molecules caused the {100} facets of a gold nanoparticle to reconstruct during CO oxidation at room temperature. The CO molecules adsorbed at the on-top sites of gold atoms in the reconstructed surface, and the energetic favorability of this reconstructed structure was confirmed by ab initio calculations and image simulations. This atomic-scale visualizing method can be applied to help elucidate reaction mechanisms in heterogeneous catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...