Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Neurosci ; 31(4): 1461-70, 2011 Jan 26.
Article in English | MEDLINE | ID: mdl-21273430

ABSTRACT

Protein sorting represents a potential point of regulation in neurotransmission because it dictates the protein composition of synaptic vesicles, the organelle that mediates transmitter release. Although the average number of most vesicle proteins has been estimated using bulk biochemical approaches (Takamori et al., 2006), no information exists on the intervesicle variability of protein number, and thus on the precision with which proteins are sorted to vesicles. To address this, we adapted a single molecule quantification approach (Mutch et al., 2007) and used it to quantify both the average number and variance of seven integral membrane proteins in brain synaptic vesicles. We report that four vesicle proteins, SV2, the proton ATPase, Vglut1, and synaptotagmin 1, showed little intervesicle variation in number, indicating they are sorted to vesicles with high precision. In contrast, the apparent number of VAMP2/synaptobrevin 2, synaptophysin, and synaptogyrin demonstrated significant intervesicle variability. These findings place constraints on models of protein function at the synapse and raise the possibility that changes in vesicle protein expression affect vesicle composition and functioning.


Subject(s)
Membrane Proteins/metabolism , Synaptic Vesicles/metabolism , Animals , Brain/metabolism , In Vitro Techniques , Protein Transport , Rats , Rats, Sprague-Dawley
2.
Anal Chem ; 80(9): 3450-7, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18363409

ABSTRACT

This article describes two complementary techniques, single-particle tracking and correlation spectroscopy, for accurately sizing nanoparticles confined within picoliter volume aqueous droplets. Single-particle tracking works well with bright particles that can be continuously illuminated and imaged, and we demonstrated this approach for sizing single fluorescent beads. Fluorescence correlation spectroscopy detects small intensity bursts from particles or molecules diffusing through the confocal probe volume, which works well with dim and rapidly diffusing particles or molecules; we demonstrated FCS for sizing synaptic vesicles confined in aqueous droplets. In combination with recent advances in droplet manipulations and analysis, we anticipate this capability to size single nanoparticles and molecules in free solution will complement existing tools for probing cellular systems, subcellular organelles, and nanoparticles.


Subject(s)
Microfluidics/methods , Nanoparticles/analysis , Organelles/chemistry , Water/chemistry , Algorithms , Animals , Diffusion , Microscopy, Fluorescence , Nanoparticles/chemistry , Rats , Spectrometry, Fluorescence , Surface Properties , Synaptic Vesicles/chemistry
3.
Electrophoresis ; 28(14): 2430-8, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17577880

ABSTRACT

This paper describes the use of two-beam line-confocal detection geometry for measuring the total mobility of individual molecules undergoing continuous-flow CE separation. High-sensitivity single-molecule confocal detection is usually performed with a diffraction limited focal spot (approximately 500 nm in diameter), which necessitates the use of nanometer-sized channels to ensure all molecules flow through the detection volume. To allow for the use of larger channels that are a few micrometers in width, we employed cylindrical optics to define a rectangular illumination area that is diffraction-limited (approximately 500 nm) in width, but a few micrometers in length to match the width of the microchannel. We present detailed studies that compare the performance of this line-confocal detection geometry with the more widely used point-confocal geometry. Overall, we found line-confocal detection to provide the highest combination of signal-to-background ratio and spatial detection efficiency when used with micrometer-sized channels. For example, in a 2 microm wide channel we achieved a 94% overall detection efficiency for single Alexa488 dye molecules when a 2 microm x 0.5 microm illumination area was used, but only 34% detection efficiency with a 0.5 microm-diameter detection spot. To carry out continuous-flow CE, we used two-beam fluorescent cross-correlation spectroscopy where the transit time of each molecule is determined by cross-correlating the fluorescence registered by two spatially offset line-confocal detectors. We successfully separated single molecules of FITC, FITC-tagged glutamate, and FITC-tagged glycine.


Subject(s)
Electrophoresis, Capillary/methods , Microfluidic Analytical Techniques , Microscopy, Confocal , Fluorescein-5-isothiocyanate/isolation & purification , Fluorescent Dyes/isolation & purification , Sensitivity and Specificity
4.
Biophys J ; 92(8): 2926-43, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17259276

ABSTRACT

In fluorescence microscopy, images often contain puncta in which the fluorescent molecules are spatially clustered. This article describes a method that uses single-molecule intensity distributions to deconvolve the number of fluorophores present in fluorescent puncta as a way to "count" protein number. This method requires a determination of the correct statistical relationship between the single-molecule and single-puncta intensity distributions. Once the correct relationship has been determined, basis histograms can be generated from the single-molecule intensity distribution to fit the puncta distribution. Simulated data were used to demonstrate procedures to determine this relationship, and to test the methodology. This method has the advantages of single-molecule measurements, providing both the mean and variation in molecules per puncta. This methodology has been tested with the avidin-biocytin binding system for which the best-fit distribution of biocytins in the sample puncta was in good agreement with a bulk determination of the avidin-biocytin binding ratio.


Subject(s)
Avidin/metabolism , Lysine/analogs & derivatives , Models, Biological , Synaptic Vesicles/metabolism , Algorithms , Animals , Brain , Cells, Cultured , Computer Simulation , Image Interpretation, Computer-Assisted/methods , Lysine/metabolism , Models, Statistical , Rats , Statistical Distributions , Synaptic Vesicles/ultrastructure
5.
J Phys Chem B ; 110(48): 24433-41, 2006 Dec 07.
Article in English | MEDLINE | ID: mdl-17134198

ABSTRACT

The ability to accurately size low concentrations of nanoscale particles in small volumes is useful for a broad range of disciplines. Here, we characterize confocal correlation spectroscopy (CCS), which is capable of measuring the sizes of both fluorescent and nonfluorescent particles, such as quantum dots, gold colloids, latex spheres, and fluorescent beads. We accurately measured particles ranging in diameter from 11 to 300 nm, a size range that had been difficult to probe, owing to a phenomenon coined biased diffusion that causes diffusion times, or particle size, to deviate as a function of laser power. At low powers, artifacts mimicking biased diffusion are caused by saturation of the detector, which is especially problematic when probing highly fluorescent or highly scattering nanoparticles. However, at higher powers (>1 mW), autocorrelation curves in both resonant and nonresonant conditions show a structure indicative of an increased contribution from longer correlation times coupled with a decrease in shorter correlation times. We propose that this change in the autocorrelation curve is due to the partial trapping of the particles as they transit the probe volume. Furthermore, we found only a slight difference in the effect of biased diffusion when comparing resonant and nonresonant conditions. Simulations suggest the depth of trapping potential necessary for biased diffusion is > 1 k(B)T. Overcoming artifacts from detector saturation and biased diffusion, CCS is particularly advantageous due to its ability to size particles in the small volumes characteristic of microfluidic channels and aqueous microdroplets. We believe the method will find increasing use in a wide range of applications in measuring nanoparticles and macromolecular systems.


Subject(s)
Nanostructures/chemistry , Computer Simulation , Nanostructures/ultrastructure , Particle Size , Spectrum Analysis , Time Factors
6.
J Am Chem Soc ; 128(10): 3233-40, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16522104

ABSTRACT

This article describes the first single-vesicle study of proton permeability across the lipid membrane of small (approximately 100 nm) uni- and multilamellar vesicles, which were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). To follow proton permeation into the internal volume of each vesicle, we encapsulated carboxyfluorescein, a pH-sensitive dye whose fluorescence was quenched in the presence of excess protons. A microfluidic platform was used for easy exchange of high- and low-pH solutions, and fluorescence quenching of single vesicles was detected with single-molecule total internal reflection fluorescence (TIRF) microscopy. Upon solution exchange and acidification of the extravesicular solution (from pH 9 to 3.5), we observed for each vesicle a biphasic decay in fluorescence. Through single-vesicle analysis, we found that rate constants for the first decay followed a Poisson distribution, whereas rate constants for the second decay followed a normal distribution. We propose that proton permeation into each vesicle first arose from formation of transient pores and then transitioned into the second decay phase, which occurred by the solubility-diffusion mechanism. Furthermore, for the bulk population of vesicles, the decay rate constant and vesicle intensity (dependent on size) correlated to give an average permeability coefficient; however, for individual vesicles, we found little correlation, which suggested that proton permeability among single vesicles was heterogeneous in our experiments.


Subject(s)
Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Liposomes/chemistry , Phosphatidylcholines/chemistry , Cell Membrane Permeability , Kinetics , Microfluidic Analytical Techniques/methods , Microscopy, Fluorescence , Protons
7.
J Am Chem Soc ; 128(3): 730-1, 2006 Jan 25.
Article in English | MEDLINE | ID: mdl-16417357

ABSTRACT

This Communication reports real-time sizing of nanoparticles in microfluidic systems using confocal correlation spectroscopy (CCS). CCS can be used to measure the size of both fluorescent and nonfluorescent particles at low concentrations (

Subject(s)
Microfluidic Analytical Techniques/methods , Nanostructures/chemistry , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Scattering, Radiation
8.
Electrophoresis ; 25(21-22): 3796-804, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15565689

ABSTRACT

With advances in III-V nitride manufacturing processes, high-power light-emitting diode (LED) chips in the blue and UV wavelengths are now commercially available at reasonable cost and can be used as excitation sources in optical sensing. We describe the use of these high-power blue and UV LEDs for sensitive fluorescence detection, including chip-based flow cytometry, capillary electrophoresis (CE), and single-molecule imaging. By using a blue LED with a focusable power of approximately 40 mW as the excitation source for fluorescent beads, we demonstrate a simple chip-based bead sorter capable of enriching the concentration of green fluorescent beads from 63% to 95%. In CE experiments, we show that a mixture of analyte solution containing 30 nM 6-carboxyrhodamine 6G and 10 nM fluorescein can be separated and detected with excellent signal-to-noise ratio (approximately 17 for 10 nM fluorescein) using the collimated emission from a blue LED; the estimated mass detection limit was approximately 200 zmol for fluorescein. We also demonstrated ultrasensitive fluorescence imaging of single rhodamine 123 molecules and individual lambda-DNA molecules. At a small fraction of the cost of an Ar+ laser, high-power blue and UV LEDs are effective alternatives for lasers and arc lamps in fluorescence applications that demand portability, low cost, and convenience.


Subject(s)
Diagnostic Imaging/instrumentation , Lab-On-A-Chip Devices , Light , Optics and Photonics/instrumentation , Cells , Electrophoresis, Capillary , Flow Cytometry , Fluorescence , Ultraviolet Rays
9.
Langmuir ; 20(22): 9437-40, 2004 Oct 26.
Article in English | MEDLINE | ID: mdl-15491172

ABSTRACT

This letter describes a new strategy for initiating a chemical reaction that is based on the laser-induced breakdown of a nanoscopic barrier, which physically separates the reactants in space. Because the breakdown of the barrier is fast ( approximately 0.3 micros) and owing to the nanometer dimension of the barrier, the reactants can be brought together and the reaction can be initiated rapidly. The time scale most suited for this method (from microseconds to tens of milliseconds) bridges nicely between the faster time scales that are accessible mostly with laser-based triggering experiments and the slower time scales that are studied most frequently with flow-based devices.


Subject(s)
Kinetics , Lasers , Membranes, Artificial , Nanotechnology , Spectrometry, Fluorescence
10.
Anal Chem ; 75(7): 1578-83, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12705588

ABSTRACT

This paper describes a general strategy for the fabrication of a microthermocouple based on the spatially defined electroless deposition of metal, followed by annealing and electroplating. We present scanning electron microscopy and atomic force microscopy characterizations of the deposition and annealing process, as well as the performance of the microfabricated Ni-Ag thermocouple. The temperature-voltage curve for this Ni-Ag microthermocouple is linear over the range 0-50 degrees C with a slope of 61.9 degrees C mV(-1). The sensitivity of our temperature measurement, which is limited by the uncertainty of our calibration curve, is approximately 1 degrees C. The optimum figure of merit (Z(opt)) is 1.0 x 10(-5) for this type of Ag-Ni thermocouple. We have fabricated microthermocouples ranging in size from 50 to 300 microm. The microthermocouple was integrated into microchannels and used to measure the in-channel temperature rise caused by the following: (1) a simple acid-base reaction, HCl + NaOH --> H2O + NaCl, and (2) an enzyme-catalyzed biochemical reaction, H2O2 + catalase --> H2O + 1/2 O2. We have also profiled the temperature increase in the presence of electroosmotic flow for a 100-, 200-, and 300-microm channel.

11.
Lab Chip ; 3(3): 158-63, 2003 Aug.
Article in English | MEDLINE | ID: mdl-15100767

ABSTRACT

Plastics are increasingly being used for the fabrication of Lab-on-a-Chip devices due to the variety of beneficial material properties, affordable cost, and straightforward fabrication methods available from a range of different types of plastics. Rapid prototyping of polydimethylsiloxane (PDMS) devices has become a well-known process for the quick and easy fabrication of microfluidic devices in the research laboratory; however, PDMS is not always an appropriate material for every application. This paper describes the fabrication of thermoset polyester microfluidic devices and masters for hot embossing using replica molding techniques. Rapid prototyped PDMS molds are convienently used for the production of non-PDMS polymeric devices. The recessed features in the cast polyester can be bonded to a second polyester piece to form an enclosed microchannel. Thermoset polyester can withstand moderate amounts of pressure and elevated temperature; therefore, the cast polyester piece also can be used as a master for embossing polymethylmethacrylate (PMMA) microfluidic systems. Examples of enclosed polyester and PMMA microchannels are presented, and we discuss the electroosmotic properties of both types of channels, which are important for analytical applications such as capillary electrophoresis.


Subject(s)
Dimethylpolysiloxanes/chemistry , Microfluidics/instrumentation , Polyesters/chemistry , Silicones/chemistry , Chemical Phenomena , Chemistry, Physical , Electrophoresis/methods , Microscopy, Electron, Scanning , Polymethyl Methacrylate/chemistry , Pressure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...