Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(32): 11222-11233, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37525575

ABSTRACT

A series of trianion assemblies of hexaazatriphenylenehexacarbonitrile {HAT(CN)6} and hexaazatrinaphthylenehexacarbonitrile {HATNA(CN)6} with three Fe(II) or Co(II) ions: {cryptand(K+)}3·{HATNA(CN)6·(FeIII2)3}3-·2C6H4Cl2 (1), {cryptand(K+)}3·{HATNA(CN)6·(CoIII2)3}3-·2C6H4Cl2 (2), and (CV+)3·{HAT(CN)6·(CoIICl2)3}3-·0.5(CVCl)·2.5C6H4Cl2 (3) are synthesized (CVCl = crystal violet). Salt 1 has a χMT value of 9.80 emu K mol-1 at 300 K, indicating a contribution of three high-spin FeII (S = 2) and one S = 1/2 of HATNA(CN)6˙3-. The χMT value increases with cooling up to 12.92 emu K mol-1 at 28 K, providing a positive Weiss temperature of +20 K. Such behavior is described using a strong antiferromagnetic coupling between S = 2 and S = 1/2 with J1 = -82.1 cm-1 and a weaker FeII-FeII antiferromagnetic coupling with J2 = -7.0 cm-1. As a result, the spins of three Fe(II) ions (S = 2) align parallel to each other forming a high-spin S = 11/2 system. Density functional theory (DFT) calculations support a high-spin state of CoII (S = 3/2) for 2 and 3. However, the χMT value of 2 and 3 is 2.25 emu K mol-1 at 300 K, which is smaller than 6 emu K mol-1 calculated for the system with three independent S = 3/2 and one S = 1/2 spins. In contrast to 1, the χMT values decrease with cooling to 0.13-0.36 emu K mol-1 at 1.9 K, indicating that spins of cobalt atoms align antiparallel to each other. Data fitting using PHI software for the model consisting of three high-spin Co(II) ions and an S = 1/2 radical ligand shows very large CoII-L˙3- coupling for 2 and 3 with J1 values of -442 and -349 cm-1. The CoII-CoII coupling via the ligand (J2) is also large, being -100 and -84 cm-1, respectively, which is more than 10 times larger than that of 1. One of the reasons for the J2 increase may be the shortening of the Co-N(L) bonds in 3 and 2 to 2.02(2) and 1.993(12) Å. DFT calculations support the population of the quartet state for the Co3 system, whereas the high-spin decet (S = 9/2) state is positioned higher by 680 cm-1 and is not populated at 300 K. This is explained by the large CoII-CoII coupling. Thus, a balance between J1 and J2 couplings provides parallel or antiparallel alignment of the FeII and CoII spins, leading to high- or low-spin ground states of {L·[MII(Hal)2]3}3-.

2.
Chemistry ; 28(10): e202104165, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-34981590

ABSTRACT

Hexaazatrianthracene (HATA) and hexaazatriphenylenehexacarbonitrile {HAT(CN)6 } are reduced by metallic iron in the presence of crystal violet (CV+ )(Cl- ). Anionic ligands are produced, which simultaneously coordinate three FeII Cl2 to form (CV+ )2 {HATA ⋅ (FeII Cl2 )3 }2- ⋅ 3 C6 H4 Cl2 (1) and (CV+ )3 {HAT(CN)6. (FeII Cl2 )3 }3- ⋅ 0.5CVCl ⋅ 2.5 C6 H4 Cl2 (2). High-spin (S=2) FeII atoms in both structures are arranged in equilateral triangles at a distance of 7 Å. An antiferromagnetic exchange is observed between FeII in {HATA ⋅ (FeII Cl2 )3 }2- (1) with a Weiss temperature (Θ) of -80 K, the PHI estimated exchange interaction (J) is -4.7 cm-1 . The {HAT(CN)6 ⋅ (FeII Cl2 )3 }3- assembly is obtained in 2. The formation of HAT(CN)6 .3- is supported by the appearance of an intense EPR signal with g=2.0037. The magnetic behavior of 2 is described by a strong antiferromagnetic coupling between the FeII and HAT(CN)6 .3- spins with J1 =-164 cm-1 (-2 J formalism) and by a weaker antiferromagnetic coupling between the FeII spins with J2 =-15.4 cm-1 . The stronger coupling results in the spins of the three FeII Cl2 units to be aligned parallel to each other in the assembly. As a result, an increase of the χM T values is observed with the decrease of temperature from 9.82 at 300 K up to 15.06 emu ⋅ K/mol at 6 K, and the Weiss temperature is also positive being at +23 K. Thus, a change in the charge and spin state of the HAT-type ligand to ⋅3- results in ferromagnetic alignment of the FeII spins, yielding a high-spin (S=11/2) system. DFT calculations showed that, due to the high symmetry and nearly degenerated LUMO of both HATA and HAT(CN)6 , their complexes with FeII Cl2 have a variety of closely lying excited high-spin states with multiplicity up to S=15/2.

3.
Dalton Trans ; 50(43): 15620-15632, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34668904

ABSTRACT

The reduction of metal(II) tetraphenylporphyrins, where metal(II) is copper, nickel or iron, has been performed in toluene solution in the presence of a cryptand. Cesium anthracenide was used as a reductant. Crystalline salts {cryptand(Cs+)}2{CuII(TPP4-)}2- (1) and {cryptand(Cs+)}{NiI(TPP2-)}-·C6H5CH3 (2) have been obtained. The two-electron reduction of {CuII(TPP2-)}0 is centered on the macrocycle allowing one to study for the first time the structure and properties of the TPP4- tetraanions in the solid state. Tetraanions have a diamagnetic state and show essential C-Cmeso bond alternation. New bands attributed to TPP4- appear at 670, 770 and 870 nm. Unpaired S = 1/2 spin is localized on CuII. The one-electron reduction of {NiII(TPP2-)}0 centered on nickel provides the formation of {NiI(TPP2-)}- with unpaired S = 1/2 spin localized on NiI at 100(2) K. The effective magnetic moment of 2 is 1.68µB at 120 K and a broad asymmetric EPR signal characteristic of NiI is observed for 2 and also for (Bu3MeP+){NiI(TPP2-)}-·C6H5CH3 (3) in the 4.2-120 K range. Since dianionic TPP2- macrocycles are present at 100(2) K, no alternation of C-Cmeso bonds is observed in 2. The excited quartet S = 3/2 state according to the calculations is positioned close to the ground S = 1/2 state. In the excited state, charge transfer from NiI to the macrocycle takes place resulting in the formation of NiII with S = 1 and TPP˙3- with S = 1/2 in the {NiII(TPP˙3-)}- anions. Therefore, the increase in the magnetic moment of 2 above 150 K is attributed to the population of the excited quartet state with a gap of 750 K. Salt 2 is EPR silent above 150 K and manifests absorption bands characteristic of TPP˙3- at RT. The reduction of NiII(TPP2-) and FeII(TPP2-) by cesium anthracenide in the presence of Bu3MeP+ yields crystals of 3 and (Bu3MeP+){FeI(TPP2-)}-·C6H5CH3 (4) whose crystal structures and optical properties are also presented. DFT calculations have been carried out for {MII(TPP2-)} (M = Cu, Ni and Fe) and their anions to interpret the experimental results obtained for 1-4.

4.
Chem Asian J ; 15(17): 2689-2695, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32613754

ABSTRACT

Two salts of the aromatic hydrocarbon decacyclene, {cryptand[2.2.2](Cs+ )} (decacyclene.- ) (1) and {Bu3 MeP+ }(decacyclene.- ) (2), were obtained. In both salts, decacyclene.- radical anions formed channels occupied by cations. However, corrugated hexagonal decacyclene.- layers could be outlined in the crystal structure of 1 with several side-by-side C⋅⋅⋅C approaches. The decacyclene.- radical anions showed strong distortion in both salts, deviating from the C3 symmetry owing to the repulsion of closely arranged hydrogen atoms and the Jahn-Teller effect. Radical anions showed intense unusually low energy absorption in the IR-range, with maxima at 4800 and 6000 cm-1 . According to the carculations, these bands can originate from the SOMO-LUMO+1 and SOMO-LUMO+2 transitions, respectively. Radical anions exhibited a S=1/2 spin state, with an effective magnetic moment of 1.72 µB at 300 K. The decacyclene.- spin antiferromagnetically coupled with a Weiss temperature of -11 K. Spin ordering was not observed down to 1.9 K owing to spin frustration in the hexagonal decacyclene.- layers.

5.
J Org Chem ; 83(4): 1861-1866, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29318869

ABSTRACT

A crystalline {cryptand[2.2.2.](K+)}{H2T(4-Py)P•-}·C6H4Cl2 (1) salt with tetra(4-pyridyl)porphyrin radical anions was obtained, enabling the effect of reduction on a metal-free porphyrin macrocycle to be studied. In contrast to pristine H2T(4-Py)P, the H2T(4-Py)P•- radical anions have altered C-C(meso) bonds due to partial loss of aromaticity from the porphyrin macrocycle. Short and long bonds have average lengths of 1.396(3) and 1.426(3) Å, which thus differ by 0.03 Å. Reduction affects the positions of the Soret and Q-bands of porphyrin observed in the spectrum of 1 at 439 and 512, 583, and 614 nm, and new bands of the radical anion appear at 684, 755, and 900 nm. The H2T(4-Py)P•- radical anions have a spin state of S = 1/2 and a magnetic moment of 1.64 µB at 300 K. Salt 1 shows a narrow asymmetric EPR signal fitted with two Lorentzian lines, with g⊥ = 2.0031 and a line width (ΔH) of 0.186 mT, and g∥ = 2.0019 (ΔH = 0.284 mT) at 295 K, and this signal splits into three components below 39 K. Salt 1 shows antiferromagnetic spin coupling with a Weiss temperature of -2 K.

6.
Dalton Trans ; 45(43): 17095-17099, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27747350

ABSTRACT

The interaction of decamethylchromocene (Cp*2Cr) with indigo in the presence of a Cl- source yields the coordination complex (indigo-O,O)(Cp*CrIICl) (1) in which one Cp* ligand at chromium is substituted by indigo. Indigo adopts an unusual cis-conformation in 1, allowing the coordination of both indigo carbonyl groups to one CrII center. Complex 1 contains CrII with an S = 1 spin state and indigo0. At the same time, calculations show that an excited ionic state is positioned close to the neutral ground state, providing the appearance of intense low-energy NIR bands in the spectrum of 1 at 820 and 1002 nm attributed to metal-to-ligand charge transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...