Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Environ Microbiome ; 18(1): 82, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990336

ABSTRACT

BACKGROUND: Cave biotopes are characterized by stable low temperatures, high humidity, and scarcity of organic substrates. Despite the harsh oligotrophic conditions, they are often inhabited by rich microbial communities. Abundant fouling with a wide range of morphology and coloration of colonies covers the walls of the Shulgan-Tash cave in the Southern Urals. This cave is also famous for the unique Paleolithic painting discovered in the middle of the last century. We aimed to investigate the diversity, distribution, and potential impact of these biofilms on the cave's Paleolithic paintings, while exploring how environmental factors influence the microbial communities within the cave. RESULTS: The cave's biofilm morphotypes were categorized into three types based on the ultrastructural similarities. Molecular taxonomic analysis identified two main clusters of microbial communities, with Actinobacteria dominating in most of them and a unique "CaveCurd" community with Gammaproteobacteria prevalent in the deepest cave sections. The species composition of these biofilms reflects changes in environmental conditions, such as substrate composition, temperature, humidity, ventilation, and CO2 content. Additionally, it was observed that cave biofilms contribute to biocorrosion on cave wall surfaces. CONCLUSIONS: The Shulgan-Tash cave presents an intriguing example of a stable extreme ecosystem with diverse microbiota. However, the intense dissolution and deposition of carbonates caused by Actinobacteria pose a potential threat to the preservation of the cave's ancient rock paintings.

2.
Microbiol Resour Announc ; 12(2): e0116022, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36633429

ABSTRACT

In this article, we report the complete genome sequences of Massilia sp. strains B-10 (RCAM05335) and H-1 (RCAM05339), which were isolated from the water of the Dal'nee Verkhnee Lake in the Shulgan-Tash cave in Russia (53°2'0″N, 57°3'0″E). The sequences were obtained using an Oxford Nanopore Technologies MinION system.

3.
Microbiol Resour Announc ; 11(10): e0056922, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36154192

ABSTRACT

The Shulgan-Tash cave is an extremely interesting object for scientific research, located in the Republic of Bashkortostan (Russia). In this article, we report the complete genome sequence of Rhizobium sp. strain RCAM05350 isolated from the "cave silver" biofilms. The sequence was obtained using Oxford Nanopore Technologies MinION.

4.
World J Microbiol Biotechnol ; 38(10): 167, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35867186

ABSTRACT

The article proves the ability of the entomopathogenic strain B. thuringiensis var. dendrolimus B-387 to high the constitutive production (3-12.5 U/mL) of extracellular chitosanase, that was found for the first time. The enzyme was purified in 94-fold by ultrafiltration, affinity sorption and cation-exchange chromatography and characterized biochemically. The molecular mass of the chitosanase determined using SDS-PAGE is 40 kDa. Temperature and pH-optima of the enzyme are 55 °C and pH 6.5, respectively; the chitosanase was stable under 50-60 °C and pH 4-10.5. Purified chitosanase most rapidly (Vmax ~ 43 µM/mL × min, KM ~ 0.22 mg/mL, kcat ~ 4.79 × 104 s-1) hydrolyzed soluble chitosan of the deacetylation degree (DD) 85% by endo-mode, and did not degrade colloidal chitin, CM-cellulose and some other glucans. The main reaction products of the chitosan enzymolysis included chitobiose, chitotriose and chitotetraose. In addition to small chitooligosaccharides (CHOs), the studied chitosanase also generated low-molecular weight chitosan (LMWC) with average Mw in range 14-46 kDa and recovery 14-35%, depending on the enzyme/substrate ratio and incubation temperature. In some cases, the chitosan (DD 85 and 50%) oligomers prepared using crude chitosanase from B. thuringiensis B-387 indicated higher antifungal and antibacterial activities in vitro in comparison with the initial polysaccharides. The data obtained indicate the good prospect of chitosanase B-387 for the production of bioactive CHOs.


Subject(s)
Anti-Infective Agents , Bacillus thuringiensis , Chitosan , Anti-Bacterial Agents/pharmacology , Bacillus thuringiensis/metabolism , Chitin/metabolism , Chitosan/chemistry , Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration , Hydrolysis
5.
Curr Microbiol ; 79(2): 63, 2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35000019

ABSTRACT

A novel acidophilic fungal strain isolated from snottites in the active sulfuric acid speleogenesis (SAS) Sheki-Heh Cave (North Caucasus, Chechen Republic) was identified and characterized. The Sheki-Heh Cave is one of three cavities of the joint SAS speleosystem; to date, it remains the only of such cave explored in Russia. Highly acidic biofilms termed snottites are found sporadically on the cave roof in sulfurous water degassing zones. Only dark-colored micromycete colonies were isolated from these microbial biofilms using direct inoculation onto Czapek agar. The dominant fungal isolate was selected for further characterization. This work aimed to identify the micromycete strain isolated from cave snottites and explore its growth characteristics. Based on the phylogenetic analysis of the rDNA ITS region (540 bp), the novel fungal strain was identified as Acidomyces acidophilum with a similarity level of 99.26%. The physiological properties of the strain were examined; the optimal pH and temperature for its growth were pH 3 and 20-28 °C, respectively. Strain IB-G85 is able to grow under NaCl concentrations up to 3%. Although IB-G85 was isolated from an oligotrophic environment and was growing under nutrient deficiency, it could utilize some sugars and proteins as well as recalcitrant substrates, such as chitin and tannin. Compared to base Czapek-Dox Agar, lactic acid and colloidal chitin as the sole carbon sources enhanced fungal growth by 100 and 59%, respectively. The occurrence of A. acidophilum and closely related fungal species within acidophilic microbial communities inhabiting sulfur-containing ecosystems is discussed in view of their contribution to snottite structure formation in SAS caves.


Subject(s)
Caves , Microbiota , Biofilms , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfur
6.
World J Microbiol Biotechnol ; 35(2): 18, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30656484

ABSTRACT

Chitosan-degrading fungal strain, Penicillium sp. IB-37-2A, produced mainly extracellular chitosanolytic enzymes under submerged agitating cultivation in presence of soluble chitosan or colloidal chitin as main carbon source. Significant N-acetyl-ß-D-glucosaminidase activity (8-18 × 103 U·ml-1) was also detected in culture filtrate of the fungal strain. Alone major exo-chitosanase from culture filtrate of Penicillium sp. IB-37-2A was purified in 46-fold using ultrafiltration, affinity sorption on colloidal chitosan and hydrophobic chromatography on Phenyl-Sepharose CL 4B and characterized. Molecular weight of the exo-ß-1.4-glucosaminidase is 41 kDa according to SDS-PAGE. The purified enzyme has optima pH and temperature 4.0 and 50-55 °C, respectively, pI 4.9; it is stable under pH 3.0-8.0 and 55 °C. Activity of the enzyme is strongly inhibited by 1 mM Hg2+ and Ag+, in less degree-10 mM Cu2+, Zn2+, Ni+ and Fe2+, slightly activated-with 1 mM Mg2+, 10 mM Ca2+, tween-80 (10 mM) and Triton X-100 (1 mM). Viscosimetric assay confirmed reported earlier exo-splitting manner of the enzyme activity. Soluble chitosan (deacetylation degree (DD) 80-85%) is most rapidly hydrolyzed by the enzyme (Vmax = 7.635 µM × min-1 × mg-1, KM ~ 0.83 mg/ml). Purified exo-chitosanase also degraded laminarin, ß-glucan, colloidal chitin and showed significant chitobiohydrolase activity (V ~ 50 µM × ml-1 × min-1 for pNP-GlcNAc2) but no hydrolyzed CMC, cellulose, xylan and galactomannan. It is found that crude and partially purified exo-ß-1.4-glucosaminidase inhibits in vitro the growth of some phytopathogenic fungi that is first report for antifungal activity of exo-chitosanase.


Subject(s)
Chitosan/chemistry , Hexosaminidases/isolation & purification , Hexosaminidases/metabolism , Penicillium/growth & development , Chromatography, DEAE-Cellulose , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Molecular Weight , Penicillium/enzymology , Temperature , Ultrafiltration
7.
Inorg Chem ; 55(17): 9099-104, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27529564

ABSTRACT

The aluminum(I) compound NacNacAl (1) reacts with diphenyl disulfide and diethyl sulfide to form the respective four-coordinate bis(phenyl sulfide) complex NacNacAl(SPh)2 (2) and alkyl thiolate aluminum complex NacNacAlEt(SEt) (3). As well, reaction of 1 with tetraphenyl diphosphine furnishes the bis(diphenyl phosphido) complex NacNacAl(PPh2)2 (4). Production of 3 and 4 are the first examples of C(sp(3))-S and R2P-PR2 activation by a main-group element complex. All three complexes were characterized by multinuclear NMR spectroscopy and X-ray crystal structure analysis. Furthermore, a variable-temperature NMR spectroscopic study was undertaken on 4 to study its dynamic behavior in solution.

8.
Dalton Trans ; 45(6): 2554-61, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26727669

ABSTRACT

The syntheses of novel Group 5 and Group 6 hydrosilylamido complexes of the type R(ArN[double bond, length as m-dash])M{N((t)Bu)SiMe2-H}X (M = Ta, R = Cp; M = Mo, R = ArN; X = Cl, H, OBn, Me) are described. The various substituents in the X position seem to play the key role in determining the extent of ß-agostic interaction with the Si-H bond. The Mo agostic hydrido complex (ArN[double bond, length as m-dash])2Mo{η(3)-N((t)Bu)SiMe2-H}H is a pre-catalyst for the hydrosilylation of carbonyls. The stoichiometric reaction between benzaldehyde and (ArN[double bond, length as m-dash])2Mo{η(3)-N((t)Bu)SiMe2-H}H gives the benzoxy complex (ArN[double bond, length as m-dash])2Mo{N((t)Bu)SiMe2-H}(OBn), which showed a similar catalytic reactivity compared to the parent hydride. Mechanistic studies suggest that a non-hydride mechanism is operative.

9.
Dalton Trans ; 45(1): 208-15, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26599264

ABSTRACT

Reaction of complex [CpRu(pyr)3][PF6] (3) with the NHC carbene IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) results in the NHC complex [Cp(IPr)Ru(pyr)2][PF6] (4), which was studied by NMR specroscopy and X-ray diffraction analysis. Reaction of [Cp(IPr)Ru(pyr)2][PF6] (4) with LiAlH4 leads to the trihydride Cp(IPr)RuH3 (5) characterised by spectroscopic methods. Heating compound 5 with hydrosilanes gives the dihydrido silyl derivatives Cp(IPr)RuH2(SiR3) (6). Systematic X-ray diffraction studies suggest that complexes 6 have stronger interligand Si∙∙∙H interactions than the isolobal phosphine complexes Cp(Pr3P)RuH2(SiR3).

10.
Article in English | MEDLINE | ID: mdl-25464089

ABSTRACT

Antifungal lipopeptides produced by an antagonistic bacterium, Paenibacillus ehimensis strain IB-X-b, were purified and analyzed. The acetone extract of the culture supernatant contained an antifungal amphiphilic fraction stainable with ninhydrin on thin layer chromatography. The fraction was further purified with water-methanol extraction followed by a chromatography on a C18-support. The analysis with LC-MS showed presence of two main series of homologous compounds, family of depsipeptides containing a hydroxy fatty acid, three 2,4-diaminobutyric acid (Dab) residues, five hydrophobic amino acids and one Ser/Thr residue, and cyclic lipopeptides of bacillomycin L and fengycin/plipastatin/agrastatin families. The prevailing compounds in this group are bacillomycin L-C15, fengycin/plipastatin A-C16 together with their homologues responsible for the majority of fungal growth inhibition by P. ehimensis IB-X-b.

11.
Mol Pharm ; 11(10): 3707-15, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25184906

ABSTRACT

Pharmaceutical cocrystals of nonsteroidal anti-inflammatory drugs diflunisal (DIF) and diclofenac (DIC) with theophylline (THP) were obtained, and their crystal structures were determined. In both of the crystal structures, molecules form a hydrogen bonded supramolecular unit consisting of a centrosymmetric dimer of THP and two molecules of active pharmaceutical ingredient (API). Crystal lattice energy calculations showed that the packing energy gain of the [DIC + THP] cocrystal is derived mainly from the dispersion energy, which dominates the structures of the cocrystals. The enthalpies of cocrystal formation were estimated by solution calorimetry, and their thermal stability was studied by differential scanning calorimetry. The cocrystals showed an enhancement of apparent solubility compared to the corresponding pure APIs, while the intrinsic dissolution rates are comparable. Both cocrystals demonstrated physical stability upon storing at different relative humidity.


Subject(s)
Diclofenac/chemistry , Diflunisal/chemistry , Theophylline/chemistry , Calorimetry, Differential Scanning , Models, Molecular , Solubility
12.
Dalton Trans ; 43(22): 8446-53, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24740303

ABSTRACT

The bis(imido) complexes ((t)BuN[double bond, length as m-dash])2Mo(PMe3)(L) (L = PMe3, C2H4) react with up to three equivalents of silane PhSiH3 to give the imido-bridged disilyl silyl Mo(vi) complex ((t)BuN){µ-(t)BuN(SiHPh)2}Mo(H)(SiH2Ph)(PMe3)2 (3) studied by NMR, IR and X-ray diffraction. NMR data supported by DFT calculations show that complex 3 is an unusual example of a silyl hydride of Mo(VI), without significant SiH interaction. Mechanistic NMR studies revealed that silane addition proceeds in a stepwise manner via a series of Si-H∙∙∙M agostic and silanimine complexes whose structures were further elucidated by DFT calculations.

13.
Dalton Trans ; 43(1): 188-95, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24131994

ABSTRACT

Reactions of Cp*Ta(NAr)Cl2 and CpM(NAr)Cl2 (M = Nb, Ta; Ar = 2,6-C6H3(i)Pr2) with NaBH4 in the presence of an excess of PMe3 provided facile access to the corresponding dihydride derivatives Cp(R)M(NAr)H2(PMe3) (Cp(R) = Cp, Cp*). Reaction of Cp*Nb(NAr)Cl2 with NaBH4 in the absence of phosphine gave the Nb(+5) borohydride-hydride complex Cp*Nb(NAr)H(η(2)-BH4). When the corresponding reactions for CpM(NAr)Cl2 (M = Nb, Ta) were carried out in the absence of an excess of phosphine, dimeric M(IV) products [CpM(µ-NAr)(η(2)-BH4)]2 containing M-M single bonds were formed.

14.
Chemistry ; 19(26): 8573-90, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23671027

ABSTRACT

The reactions of bis(borohydride) complexes [(RN=)Mo(BH4)2(PMe3)2] (4: R = 2,6-Me2C6H3; 5: R = 2,6-iPr2C6H3) with hydrosilanes afford new silyl hydride derivatives [(RN=)Mo(H)(SiR'3)(PMe3)3] (3: R = Ar, R'3 = H2Ph; 8: R = Ar', R'3 = H2Ph; 9: R = Ar, R'3 = (OEt)3; 10: R = Ar, R'3 = HMePh). These compounds can also be conveniently prepared by reacting [(RN=)Mo(H)(Cl)(PMe3)3] with one equivalent of LiBH4 in the presence of a silane. Complex 3 undergoes intramolecular and intermolecular phosphine exchange, as well as exchange between the silyl ligand and the free silane. Kinetic and DFT studies show that the intermolecular phosphine exchange occurs through the predissociation of a PMe3 group, which, surprisingly, is facilitated by the silane. The intramolecular exchange proceeds through a new non-Bailar-twist pathway. The silyl/silane exchange proceeds through an unusual Mo(VI) intermediate, [(ArN=)Mo(H)2(SiH2Ph)2(PMe3)2] (19). Complex 3 was found to be the catalyst of a variety of hydrosilylation reactions of carbonyl compounds (aldehydes and ketones) and nitriles, as well as of silane alcoholysis. Stoichiometric mechanistic studies of the hydrosilylation of acetone, supported by DFT calculations, suggest the operation of an unexpected mechanism, in that the silyl ligand of compound 3 plays an unusual role as a spectator ligand. The addition of acetone to compound 3 leads to the formation of [trans-(ArN)Mo(OiPr)(SiH2Ph)(PMe3)2] (18). This latter species does not undergo the elimination of a Si-O group (which corresponds to the conventional Ojima's mechanism of hydrosilylation). Rather, complex 18 undergoes unusual reversible ß-CH activation of the isopropoxy ligand. In the hydrosilylation of benzaldehyde, the reaction proceeds through the formation of a new intermediate bis(benzaldehyde) adduct, [(ArN=)Mo(η(2)-PhC(O)H)2(PMe3)], which reacts further with hydrosilane through a η(1)-silane complex, as studied by DFT calculations.

15.
Inorg Chem ; 51(7): 4300-13, 2012 Apr 02.
Article in English | MEDLINE | ID: mdl-22435952

ABSTRACT

The reaction of (ArN=)MoCl(2)(PMe(3))(3) (Ar = 2,6-diisopropylphenyl) with L-Selectride gives the hydrido-chloride complex (ArN=)Mo(H)(Cl)(PMe(3))(3) (2). Complex 2 was found to catalyze the hydrosilylation of carbonyls and nitriles as well as the dehydrogenative silylation of alcohols and water. Compound 2 does not show any productive reaction with PhSiH(3); however, a slow H/D exchange and formation of (ArN=)Mo(D)(Cl)(PMe(3))(3) (2(D)) was observed upon addition of PhSiD(3). Reactivity of 2 toward organic substrates was studied. Stoichiometric reactions of 2 with benzaldehyde and cyclohexanone start with dissociation of the trans-to-hydride PMe(3) ligand followed by coordination and insertion of carbonyls into the Mo-H bond to form alkoxy derivatives (ArN=)Mo(Cl)(OR)(PMe(2))L(2) (3: R = OCH(2)Ph, L(2) = 2 PMe(3); 5: R = OCH(2)Ph, L(2) = η(2)-PhC(O)H; 6: R = OCy, L(2) = 2 PMe(3)). The latter species reacts with PhSiH(3) to furnish the corresponding silyl ethers and to recover the hydride 2. An analogous mechanism was suggested for the dehydrogenative ethanolysis with PhSiH(3), with the key intermediate being the ethoxy complex (ArN=)Mo(Cl)(OEt)(PMe(3))(3) (7). In the case of hydrosilylation of acetophenone, a D-labeling experiment, i.e., a reaction of 2 with acetophenone and PhSiD(3) in the 1:1:1 ratio, suggests an alternative mechanism that does not involve the intermediacy of an alkoxy complex. In this particular case, the reaction presumably proceeds via Lewis acid catalysis. Similar to the case of benzaldehyde, treatment of 2 with styrene gives trans-(ArN=)Mo(H)(η(2)-CH(2)═CHPh)(PMe(3))(2) (8). Complex 8 slowly decomposes via the release of ethylbenzene, indicating only a slow insertion of styrene ligand into the Mo-H bond of 8.

16.
Inorg Chem ; 51(2): 754-6, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22220921

ABSTRACT

Carbonyl hydrosilylation catalyzed by (ArN)Mo(H)(SiH(2)Ph)(PMe(3))(3) (3) is unusual in that it does not involve the expected Si-O elimination from intermediate (ArN)Mo(SiH(2)Ph)(O(i)Pr)(PMe(3))(2) (7). Instead, 7 reversibly transfers ß-CH hydrogen from the alkoxide ligand to metal.

17.
Chem Commun (Camb) ; 48(3): 455-7, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22076679

ABSTRACT

The imido-hydrido complex (ArN)Mo(H)(Cl)(PMe(3))(3) catalyses a variety of hydroboration reactions, including the first example of catalytic addition of HBCat to nitriles to form the bis(borylated) amines RCH(2)N(BCat)(2). The latter species easily undergoes chemoselective coupling with aldehydes R'C(O)H to yield imines RCH(2)N=C(H)R'.

18.
J Am Chem Soc ; 133(17): 6487-9, 2011 May 04.
Article in English | MEDLINE | ID: mdl-21476545

ABSTRACT

A 1:1:1 reaction between complex (Tp)(ArN═)Mo(H)(PMe(3)) (3), silane PhSiD(3), and carbonyl substrate established that hydrosilylation catalyzed by 3 is not accompanied by deuterium incorporation into the hydride position of the catalyst, thus ruling out the conventional hydride mechanism based on carbonyl insertion into the M-H bond. An analogous result was observed for the catalysis by (O═)(PhMe(2)SiO)Re(PPh(3))(2)(I)(H) and (Ph(3)PCuH)(6).

19.
Chem Commun (Camb) ; 46(41): 7831-3, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-20856991

ABSTRACT

Complex (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)) (2, Ar = 2,6-diisopropylphenyl) catalyzes the hydrosilylation of carbonyls by an unexpected associative mechanism. Complex 2 also reacts with PhSiH(3) by a σ-bond metathesis mechanism to give the silyl derivative (Cp)(ArN[double bond, length as m-dash])Mo(SiH(2)Ph)(PMe(3)).

20.
Dalton Trans ; 39(39): 9264-9, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20585667

ABSTRACT

Reaction of Cp2TaH3 (1) with ClPEt2 gives the insertion product [Cp2TaH2(PHEt2)]Cl (5), which upon deprotonation with LiN(SiMe3)2 affords the phosphido complex Cp2TaH2(PEt2) (6) as the kinetic product. The latter transforms by a first-order reaction during the course of 3.5 days to the phosphine complex Cp2TaH(PHEt2) (7). Repetition of this insertion/deprotonation sequence gives the compounds [Cp2Ta(PHEt2)2]Cl (8) and Cp2Ta(PEt2)(PHEt2) (9). Reaction of the latter with 0.5[(µ-Cl)Rh(η2-C2H4)]2 in the presence of LiN(SiMe3)2 gives the bimetallic complex Cp2Ta(µ-PEt2)2Rh(η2-C2H4) (10), which was studied by NMR and X-ray diffraction analysis. Complex 10 catalyses the hydrosilylation of acetophenone by PhMeSiH2.

SELECTION OF CITATIONS
SEARCH DETAIL
...