Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Comb Sci ; 17(7): 413-20, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26036755

ABSTRACT

The combinatorial characterization of the growth kinetics in chemical vapor deposition processes is challenging because precise information about the local precursor flow is usually difficult to access. In consequence, combinatorial chemical vapor deposition techniques are utilized more to study functional properties of thin films as a function of chemical composition, growth rate or crystallinity than to study the growth process itself. We present an experimental procedure which allows the combinatorial study of precursor surface kinetics during the film growth using high vacuum chemical vapor deposition. As consequence of the high vacuum environment, the precursor transport takes place in the molecular flow regime, which allows predicting and modifying precursor impinging rates on the substrate with comparatively little experimental effort. In this contribution, we study the surface kinetics of titanium dioxide formation using titanium tetraisopropoxide as precursor molecule over a large parameter range. We discuss precursor flux and temperature dependent morphology, crystallinity, growth rates, and precursor deposition efficiency. We conclude that the surface reaction of the adsorbed precursor molecules comprises a higher order reaction component with respect to precursor surface coverage.


Subject(s)
Organometallic Compounds/chemistry , Titanium/chemistry , Kinetics , Surface Properties , Temperature
2.
ACS Appl Mater Interfaces ; 7(18): 9736-43, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25901661

ABSTRACT

A key factor in engineering integrated optical devices such as electro-optic switches or waveguides is the patterning of thin films into specific geometries. In particular for functional oxides, etching processes are usually developed to a much lower extent than for silicon or silicon dioxide; therefore, selective area deposition techniques are of high interest for these materials. We report the selective area deposition of titanium dioxide using titanium isopropoxide and water in a high-vacuum chemical vapor deposition (HV-CVD) process at a substrate temperature of 225 °C. Here­contrary to conventional thermal CVD processes­only hydrolysis of the precursor on the surface drives the film growth as the thermal energy is not sufficient to thermally decompose the precursor. Local modification of the substrate surface energy by perfluoroalkylsilanization leads to a reduced surface residence time of the precursors and, consequently, to lower reaction rate and a prolonged incubation period before nucleation occurs, hence, enabling selective area growth. We discuss the dependence of the incubation time and the selectivity of the deposition process on the presence of the perfluoroalkylsilanization layer and on the precursor impinging rates­with selectivity, we refer to the difference of desired material deposition, before nucleation occurs in the undesired regions. The highest measured selectivity reached (99 ± 5) nm, a factor of 3 superior than previously reported in an atomic layer deposition process using the same chemistry. Furthermore, resolution of the obtained patterns will be discussed and illustrated.

4.
Rev Sci Instrum ; 80(9): 093706, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19791943

ABSTRACT

We report on a heterodyne interferometric scanning near-field optical microscope developed for characterizing, at the nanometric scale, refractive index variations in thin films. An optical lateral resolution of 80 nm (lambda/19) and a precision smaller than 10(-4) on the refractive index difference have been achieved. This setup is suitable for a wide set of thin films, ranging from periodic to heterogeneous samples, and turns out to be a very promising tool for determining the optical homogeneity of thin films developed for nanophotonics applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...