Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791582

ABSTRACT

A novel nanotechnology-based drug delivery system (DDS) targeted at pancreatic cancer cells was developed, characterized, and tested. The system consisted of liposomes as carriers, an anticancer drug (paclitaxel) as a chemotherapeutic agent, and a modified synthetic somatostatin analog, 5-pentacarbonyl-octreotide, a ligand for somatostatin receptor 2 (SSTR2), as a targeting moiety for pancreatic cancer. The cellular internalization, cytotoxicity, and antitumor activity of the DDS were tested in vitro using human pancreatic ductal adenocarcinoma (PDAC) cells with different expressions of the targeted SSTR2 receptors, and in vivo on immunodeficient mice bearing human PDAC xenografts. The targeted drug delivery system containing paclitaxel exhibited significantly enhanced cytotoxicity compared to non-targeted DDS, and this efficacy was directly related to the levels of SSTR2 expression. It was found that octreotide-targeted DDS proved exceptionally effective in suppressing the growth of PDAC tumors. This study underscores the potential of octreotide-targeted liposomal delivery systems to enhance the therapeutic outcomes for PDAC compared with non-targeted liposomal DDS and Paclitaxel-Cremophor® EL, suggesting a promising avenue for future cancer therapy innovations.


Subject(s)
Drug Delivery Systems , Liposomes , Octreotide , Paclitaxel , Pancreatic Neoplasms , Receptors, Somatostatin , Xenograft Model Antitumor Assays , Animals , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Receptors, Somatostatin/metabolism , Mice , Cell Line, Tumor , Paclitaxel/pharmacology , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Liposomes/chemistry , Drug Delivery Systems/methods , Octreotide/administration & dosage , Octreotide/pharmacology , Somatostatin/analogs & derivatives , Nanotechnology/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology
2.
J Pediatr Pharmacol Ther ; 26(2): 172-178, 2021.
Article in English | MEDLINE | ID: mdl-33603581

ABSTRACT

OBJECTIVE: The administration of hyperosmolar oral products in neonates has been associated with gastrointestinal complications. The American Academy of Pediatrics recommends a maximum osmolality of 450 mOsm/kg for formulas and enteral nutrition for term infants, and recent studies reported intolerance to enteral nutrition with osmolality above 500 mOsm/kg in low birthweight infants. The osmolality of medications administered to neonates is often not available in the literature or from manufacturers. The purpose of this study was to determine the osmolality of oral medications commonly administered to neonates in the NICU. METHODS: Fifty-two oral medications were chosen for this study, including solutions, suspensions, syrups, elixirs, and intravenous solutions administered orally. The osmolality of each medication was measured in triplicate by using freezing point depression. RESULTS: Thirty-seven of the 43 medications with measurable values (86.1%) had an osmolality greater than 500 mOsm/kg, and 6 medications (14%) had an osmolality less than 500 mOsm/kg. Nine medications did not result in a value. CONCLUSIONS: Our study provides osmolality data on oral medications commonly used in neonates with most oral medications having an osmolality greater than 500 mOsm/kg.

3.
Theranostics ; 9(26): 8362-8376, 2019.
Article in English | MEDLINE | ID: mdl-31754402

ABSTRACT

Non-Small Cell Lung Carcinoma (NSCLC), is the most common type of lung cancer (more than 80% of all cases). Small molecule Tyrosine Kinase (TK) Inhibitors acting on the Epidermal Growth Factor Receptors (EGFRs) are standard therapies for patients with NSCLC harboring EGFR-TK inhibitor-sensitizing mutations. However, fewer than 10 % of patients with NSCLC benefit from this therapy. Moreover, even the latest generation of EGFR inhibitors can cause severe systemic toxicities and are ineffective in preventing non-canonical EGFR signaling. In order to minimize and even overcome these limitations, we are proposing a novel multi-tier biotechnology treatment approach that includes: (1) suppression of all four types of EGFR-TKs by a pool of small interfering RNAs (siRNAs); (2) induction of cell death by an anticancer drug, (3) enhancing the efficiency of the treatment by the local inhalation delivery of therapeutic agents directly to the lungs (passive targeting), (4) active receptor-mediated targeting of the therapy specifically to cancer cells that in turn should minimize adverse side effects of treatment and (5) increasing the stability, solubility, and cellular penetration of siRNA and drug by using tumor targeted Nanostructured Lipid Carriers (NLC). Methods: NLCs targeted to NSCLC cells by a synthetic Luteinizing Hormone-Releasing Hormone (LHRH) decapeptide was used for the simultaneous delivery of paclitaxel (TAX) and a pool of siRNAs targeted to the four major forms of EGFR-TKs. LHRH-NLC-siRNAs-TAX nanoparticles were synthesized, characterized and tested in vitro using human lung cancer cells with different sensitivities to gefitinib (inhibitor of EGFR) and in vivo on an orthotopic NSCLC mouse model. Results: Proposed nanoparticle-based complex containing an anticancer drug, inhibitors of different types of EGFR-TKs and peptide targeted to the tumor-specific receptors (LHRH-NLC-siRNAs-TAX) demonstrated a favorable organ distribution and superior anticancer effect when compared with treatment by a single drug, inhibitor of one EGFR-TK and non-targeted therapy. Conclusions: The use of a multifunctional NLC-based delivery system substantially enhanced the efficiency of therapy for NSCLC and possibly will limit adverse side effects of the treatments. The results obtained have the potential to significantly impact the field of drug delivery and to improve the efficiency of therapy of lung and other types of cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , Nanotechnology/methods , A549 Cells , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gefitinib/therapeutic use , Genetic Therapy/methods , Humans , Mice
4.
J Control Release ; 219: 500-518, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26297206

ABSTRACT

Local administration of therapeutics by inhalation for treatment of lung diseases has the ability to deliver drugs, nucleic acids and peptides specifically to the site of their action and therefore enhance the efficacy of the treatment, limit the penetration of nebulized therapeutic agent(s) into the bloodstream and consequently decrease adverse systemic side effects of the treatment. Nanotechnology allows for a further enhancement of the treatment efficiency. The present review analyzes modern therapeutic approaches of inhaled nanoscale-based pharmaceutics for the detection and treatment of various lung diseases.


Subject(s)
Drug Delivery Systems , Lung Diseases/drug therapy , Administration, Inhalation , Animals , Humans , Nanotechnology , Pharmaceutical Preparations/administration & dosage
5.
J Control Release ; 171(3): 349-57, 2013 Nov 10.
Article in English | MEDLINE | ID: mdl-23648833

ABSTRACT

We developed, synthesized, and tested a multifunctional nanostructured lipid nanocarrier-based system (NLCS) for efficient delivery of an anticancer drug and siRNA directly into the lungs by inhalation. The system contains: (1) nanostructured lipid carriers (NLC); (2) anticancer drug (doxorubicin or paclitaxel); (3) siRNA targeted to MRP1 mRNA as a suppressor of pump drug resistance; (4) siRNA targeted to BCL2 mRNA as a suppressor of nonpump cellular resistance and (5) a modified synthetic analog of luteinizing hormone-releasing hormone (LHRH) as a targeting moiety specific to the receptors that are overexpressed in the plasma membrane of lung cancer cells. The NLCS was tested in vitro using human lung cancer cells and in vivo utilizing mouse orthotopic model of human lung cancer. After inhalation, the proposed NLCS effectively delivered its payload into lung cancer cells leaving healthy lung tissues intact and also significantly decreasing the exposure of healthy organs when compared with intravenous injection. The NLCS showed enhanced antitumor activity when compared with intravenous treatment. The data obtained demonstrated high efficiency of proposed NLCS for tumor-targeted local delivery by inhalation of anticancer drugs and mixture of siRNAs specifically to lung cancer cells and, as a result, efficient suppression of tumor growth and prevention of adverse side effects on healthy organs.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Drug Carriers/chemistry , Lung Neoplasms/drug therapy , Nanostructures/chemistry , Paclitaxel/administration & dosage , RNA, Small Interfering/administration & dosage , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Doxorubicin/therapeutic use , Gonadotropin-Releasing Hormone/chemistry , Humans , Lipids/chemistry , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Nude , Multidrug Resistance-Associated Proteins/genetics , Paclitaxel/therapeutic use , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...