Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 19(5): 2869-2875, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30501793

ABSTRACT

Wear debris from automotive brake systems represents a major source of non-exhaust emissions from road traffic and its production increases with number of cars worldwide. However, impact of brake wear debris on the environment and organisms is still not clear. One of the most possible ways by which these particles may affect living organisms is oxidative stress. Production of reactive oxidative species may cause damage of basic cell components, lipids, proteins, etc. Aim of this study is to perform characterization of airborne and nonairborne fractions of brake wear debris generated during standard dynamometer tests and evaluation of its potential to induce oxidative stress via lipid peroxidation and carbonylation of proteins in non-cellular system. Elemental and phase composition were determined by scanning electron microscopy, Raman microspectroscopy, and X-ray powder diffraction analysis. Carbon in amorphous form and graphite, copper, and iron in form of oxides were identified as major components in both studied fractions. Characteristic size of studied wear particles was evaluated by dynamic light scattering. Both airborne and nonairborne samples showed ability to induce oxidative stress which results from determination of carbonylated proteins.

2.
J Nanosci Nanotechnol ; 19(5): 2934-2937, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30501802

ABSTRACT

The present article describes a method of the preparation of erbium oxide nanocrystallites (nano Er2O3) via thermal decomposition of a transient complex formed in situ from Er(NO3)3·5H2O and glycine. Decomposition of the complex occurred at about of (250±10) °C. Ultra-fine light pink powder of erbium oxide nanocrystallites was obtained via this method. The resulting nanocrystallites were characterized using X-ray powder diffraction analysis, which showed the nanocrystallites having the crystallite size equal to 10 nm. Morphology of the nanocrystallites was examined by scanning and transmission electron microscopy. Electron diffraction observed in transmission electron microscopy corresponds to the results obtained from X-ray diffraction analysis. The elemental composition of the product was confirmed by EDS analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...