Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 129: 29-35, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30682686

ABSTRACT

A new bioelectronic nose based on a field effect transistor coupled with an aptamer as the sensing element was developed. The gas-to-liquid extraction interface required for appropriate aptamer function was integrated into standard CMOS technology. It was developed with the use of a sacrificial aluminium etching technique combined with surface modifications by silanes for wettability control. As a proof of concept, aptamer Van74 for vanillin was immobilized on the sensitive surface of the ISFET. The developed microsystem can selectively detect vanillin vapor in a concentration range from 2.7 ppt to 0.3 ppm, with a detection limit of 2.7 ppt. The sensor was able to detect vanillin in a gas sample obtained from roasted coffee beans. This outcome provides a foundation for developing a new generation of bioelectronic noses for the detection and discrimination of volatile compounds.


Subject(s)
Aptamers, Nucleotide/chemistry , Benzaldehydes/analysis , Biosensing Techniques/instrumentation , Electronic Nose , Transistors, Electronic , Volatile Organic Compounds/analysis , Equipment Design , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Membranes, Artificial , Volatilization
2.
Sensors (Basel) ; 18(1)2017 Dec 26.
Article in English | MEDLINE | ID: mdl-29278396

ABSTRACT

The electrochemical detection of interactions between aptamers and low-molecular-weight targets often lacks sensitivity. Signal amplification improves the detection of the aptamer-analyte complex; Bsm DNA polymerase was used to amplify the signal from the interaction of vanillin and its aptamer named Van_74 on an ion-sensitive field-effect transistor (ISFET)-based biosensor. The aptamer was immobilized on the ISFET sensitive surface. A short DNA probe was hybridized with the aptamer and dissociated from it upon vanillin addition. A free probe interacted with a special DNA molecular beacon initiated the Bsm DNA polymerase reaction that was detected by ISFET. A buffer solution suitable for both aptamer action and Bsm DNA polymerase activity was determined. The ISFET was shown to detect the Bsm DNA polymerase reaction under the selected conditions. Vanillin at different concentrations (1 × 10-6-1 × 10-8 M) was detected using the biosensor with signal amplification. The developed detection system allowed for the determination of vanillin, starting at a 10-8 M concentration. Application of the Bsm DNA polymerase resulted in a 15.5 times lower LoD when compared to the biosensor without signal amplification (10.1007/s00604-017-2586-4).


Subject(s)
Benzaldehydes/chemistry , Aptamers, Nucleotide , Biosensing Techniques , DNA-Directed DNA Polymerase , Electrochemical Techniques , Gold
3.
Mikrochim Acta ; 185(1): 3, 2017 12 02.
Article in English | MEDLINE | ID: mdl-29594590

ABSTRACT

An aptamer for vanillin was obtained and then used for the development of an aptasensor based on an ion-sensitive field-effect transistor (ISFET). This aptamer (a single-stranded DNA;ssDNA) was selected using the Capture-SELEX protocol, which suites well for selection of aptamers to small molecules. Among six aptamer candidates, the aptamer Van_74 with the highest affinity for vanillin was chosen (elution of 35% of the aptamer from a solid support in the presence of 2 mM of vanillin). Van_74 was characterized using nondenaturating PAGE of washouts from magnetic beads. It is shown that Van_74 binds to vanillin with an dissociation constant of >7.8 µM (determined by nondenaturating PAGE) and it was specific to vanillin in comparison with interferents: benzaldehyde, guaiacol, furaneol, ethyl guaiacol and ethyl vanillin. Also it was shown that change of buffer composition greatly affected the binding ability of Van_74. For biosensor fabrication aptamer was immobilised on the Ta2O5-sensitive surface of the ISFET via "click-chemistry". Detection scheme implied dehybridisation of the ssDNA probe from the aptamer and release in the solution during the addition of vanillin. As a result, the surface potential increase upon vanillin binding with the aptamer was detected by the transistor. The biosensor had a detection limit of 1.55 × 10-7 M and a dynamic range from 1.55 × 10-7 M to 1 × 10-6 M. Effective constant Kd,eff for vanillin binding on biosensor surface was calculated to be (9 ± 3) × 10-7 M. This allows selective detection of vanillin in the mixture of interferents and in samples of coffee extract. Graphical abstract A biosensor for vanillin was developed on the basis of an aptamer that was obtained via Capture-SELEX and by using an ISFET. This biosensor can be used for vanillin detection in presence of interferents and in real sample using an approach of ssDNA probe dehybridization.

SELECTION OF CITATIONS
SEARCH DETAIL
...