Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 95(12): e10956, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38115184

ABSTRACT

1-D oxides Zn1-xCuxO and spherical composites Zn1-xCuxO/CuO were obtained by thermolysis of formate-glycolate complexes Zn1-xCux (HCOO)(OCH2CH2O)1/2 (0 ≤ x ≤ 0.15). The structural and property characteristics showed that Cu was introduced into the Zn site of the ZnO lattice to form the Zn0.95Cu0.05O solid solution. The concentration of copper in the precursors regulates the topological and structural features of the formation of Zn1-xCuxO oxides, which determine their sorption and photocatalytic properties. The materials were tested in As3+ photooxidation reaction under UV and visible radiation. It has been established that Cu+ is an effective dopant in the composition of 1-D oxide Zn1-xCuxO (0 ≤ x < 0.1). The presence of Cu2+ in the shell of Zn1-xCuxO/CuO composite reduces the photoactivity of the material. The maximum efficiency of arsenic extraction (up to 80% for Zn0.95Cu0.05O) was achieved from dilute arsenic-containing solutions (3.8 mg/L As) and an adsorbent concentration of 0.8 g/L for 24 h. In saturated solutions (380 mg/L As) this value is reduced by a factor of 100. According to XPS data, the primary process is As3+ sorption on the catalyst surface followed by its oxidation to As5+. Using the EPR method it was found that singly charged oxygen vacancies V O + $$ {V}_O^{+} $$ associated with Cu in Zn1-xCuxO are directly involved in the photostimulated oxidation of As3+. PRACTITIONER POINTS: Two types of Zn1-x Cux O photocatalysts were obtained by thermolysis of the Zn1-x Сux (HCOO)(OCH2 CH2 O)1/2 complex (0 ≤ x ≤ 0.15) in air. Sorption of arsenic from dilute solutions reaches 80% on 1-D oxide Zn0.95 Cu0.05 O. Sorption of As3+ on the catalyst surface is at primary process followed by its oxidation to As5+ . Removal of As3+ from alkaline solutions occurs due to successful combination of sorption and photocatalytic properties of the 1-D oxides Zn1-x Cux O.


Subject(s)
Arsenic , Zinc Oxide , Zinc Oxide/chemistry , Copper/chemistry , Oxides/chemistry , Light , Oxygen
2.
Phys Chem Chem Phys ; 21(44): 24740-24748, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31681940

ABSTRACT

Oxygen surface exchange and diffusion in Ca12Al14O33±Î´ single crystal were studied by a unique in situ method based on isotope equilibration in the gas phase. Although the interphase exchange rate and oxygen diffusion coefficient demonstrate good agreement with available data, only the employed method is efficient to isolate the contributions of various types of exchange; thus, for the first time, it is possible to estimate the surface heterogeneity of mayenite. The obtained results disprove conclusions previously developed in the literature; the temperature region of 750 °C to 850 °C is not the intermediate region where two types of oxygen diffusion coexist. Complex discussion of the accumulated information on the temperature-dependent properties of mayenite allowed us to represent a model describing the observed dependencies based on the near-surface layer stability in the studied temperature range.

3.
Nanotechnology ; 29(39): 395604, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-29992908

ABSTRACT

In this paper we report the synthesis of colloidal CdSe/CdS core-shell heteronanoplatelets with epitaxially grown wurtzite (WZ) 1D CdS branches or legs by using cadmium diethyldithiocarbamate as a single-source precursor. The growth of WZ branches was achieved by exploiting zinc blende-wurtzite polytypism of cadmium chalcogenides induced by oleylamine. Synthesized 'nanospiders' exhibit enhanced absorption in the UV-blue region and narrow and relatively intense red photoluminescence depending on the amount of CdS in the heteronanostructure.

4.
Phys Chem Chem Phys ; 19(45): 30520-30532, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29115310

ABSTRACT

To realize spintronic devices based on topological insulators (TIs), well-defined interfaces between magnetic metals and TIs are required. Here, we characterize atomically precisely the interface between the 3d transition metal Fe and the TI Bi2Te3 at different stages of its formation. Using photoelectron diffraction and holography, we show that after deposition of up to 3 monolayers Fe on Bi2Te3 at room temperature, the Fe atoms are ordered at the interface despite the surface disorder revealed by our scanning-tunneling microscopy images. We find that Fe occupies two different sites: a hollow adatom deeply relaxed into the Bi2Te3 quintuple layers and an interstitial atom between the third (Te) and fourth (Bi) atomic layers. For both sites, our core-level photoemission spectra and density-functional theory calculations demonstrate simultaneous chemical bonding of Fe to both Te and Bi atoms. We further show that upon deposition of Fe up to a thickness of 20 nm, the Fe atoms penetrate deeper into the bulk forming a 2-5 nm interface layer containing FeTe. In addition, excessive Bi is pushed down into the bulk of Bi2Te3 leading to the formation of septuple layers of Bi3Te4 within a distance of ∼25 nm from the interface. Controlling the magnetic properties of the complex interface structures revealed by our work will be of critical importance when optimizing the efficiency of spin injection in TI-based devices.

5.
Nano Lett ; 16(7): 4535-43, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27248659

ABSTRACT

The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry. Using photoelectron diffraction and spectroscopy we have demonstrated a selective incorporation of boron impurities into only one of the two graphene sublattices. We have shown that in the well-oriented graphene on the Co(0001) surface the carbon atoms occupy two nonequivalent positions with respect to the Co lattice, namely top and hollow sites. Boron impurities embedded into the graphene lattice preferably occupy the hollow sites due to a site-specific interaction with the Co pattern. Our theoretical calculations predict that such boron-doped graphene possesses a band gap that can be precisely controlled by the dopant concentration. B-graphene with doping asymmetry is, thus, a novel material, which is worth considering as a good candidate for electronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...