Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Prog Neurobiol ; 188: 101783, 2020 05.
Article in English | MEDLINE | ID: mdl-32142857

ABSTRACT

The drugs currently available for treating epilepsy are only partially effective in managing this condition. Therefore, it is crucial to investigate new pathways that induce and promote epilepsy development. Previously, we found that platelets interact with neuronal glycolipids and actively secrete pro-inflammatory mediators during central nervous system (CNS) pathological conditions such as neuroinflammation and traumatic brain injury (TBI). These factors increase the permeability of the blood-brain barrier (BBB), which may create a predisposition to epileptic seizures. In this study, we demonstrated that platelets substantially enhanced epileptic seizures in a mouse model of pentylenetetrazole (PTZ) -induced seizures. We found that platelets actively secreted serotonin, contributed to increased BBB permeability, and were present in the CNS parenchyma during epileptic seizures. Furthermore, platelets directly stimulated neuronal electric activity and induced the expression of specific genes related to early neuronal response, neuroinflammation, and oxidative phosphorylation, leading to oxidative stress in neurons. The intracranial injection of physiological numbers of platelets that mimicked TBI-associated bleeding was sufficient to induce severe seizures, which resembled conventional PTZ-induced epileptic activity. These findings highlight a conceptually new role of platelets in the development of epileptic seizures, and indicate a potential new therapeutic approach targeting platelets to prevent and treat epilepsy.


Subject(s)
Blood Platelets/metabolism , Brain , Epilepsy , Gangliosides/metabolism , Inflammation , Oxidative Stress/physiology , Seizures , Serotonin/metabolism , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiopathology , Brain/metabolism , Brain/physiopathology , Disease Models, Animal , Epilepsy/etiology , Epilepsy/metabolism , Epilepsy/physiopathology , Inflammation/metabolism , Inflammation/physiopathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Seizures/etiology , Seizures/metabolism , Seizures/physiopathology
2.
Neurobiol Aging ; 77: 128-143, 2019 05.
Article in English | MEDLINE | ID: mdl-30797170

ABSTRACT

Although it was suggested that gangliosides play an important role in the binding of amyloid fragments to neuronal cells, the exact role of gangliosides in Alzheimer's disease (AD) pathology remains unclear. To understand the role of gangliosides in AD pathology in vivo, we crossed st3gal5-deficient (ST3-/-) mice that lack major brain gangliosides GM1, GD1a, GD3, GT1b, and GQ1b with 5XFAD transgenic mice that overexpress 3 mutant human amyloid proteins AP695 and 2 presenilin PS1 genes. We found that ST3-/- 5XFAD mice have a significantly reduced burden of amyloid depositions, low level of neuroinflammation, and did not exhibit neuronal loss or synaptic dysfunction. ST3-/- 5XFAD mice performed significantly better in a cognitive test than wild-type (WT) 5XFAD mice, which was comparable with WT nontransgenic mice. Treatment of WT 5XFAD mice with the sialic acid-specific Limax flavus agglutinin resulted in substantial improvement of AD pathology to a level of ST3-/- 5XFAD mice. Thus, our findings highlight an important role for gangliosides as a target for the treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/etiology , Gangliosides/physiology , Molecular Targeted Therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloidogenic Proteins/metabolism , Animals , Gangliosides/deficiency , Inflammation , Lectins/administration & dosage , Mice, Inbred C57BL , Mice, Transgenic , Sialic Acids/administration & dosage , Sialyltransferases/deficiency
3.
J Neurosci Res ; 97(2): 162-184, 2019 02.
Article in English | MEDLINE | ID: mdl-30367726

ABSTRACT

In contrast to peripheral macrophages, microglia in the central nervous system (CNS) exhibit a specific deactivated phenotype; however, it is not clear how this phenotype is maintained. Two alternative hypotheses were postulated recently: (a) microglia differ from peripheral macrophages being derived from the yolk sac (YS), whereas peripheral macrophages originate from bone marrow (BM); (b) microglia acquire a specific phenotype under the influence of the CNS microenvironment. We have previously shown that microglia express miR-124, which was also induced in BM-derived macrophages co-cultured with a neurons. We here investigated the possibility of horizontal transfer of the neuron-specific microRNAs miR-124 and miR-9 from primary neurons to microglia/macrophages. We found that after incubation with neuronal conditioned media (NCM), macrophages downregulated activation markers MHC class II and CD45. Neither cultured adult microglia nor YS- and BM-derived macrophages demonstrated intrinsic levels of miR-124 expression. However, after incubation with NCM, miR-124 was induced in both YS- and BM-derived macrophages. Biochemical analysis demonstrated that the NCM contained miR-124 and miR-9 in complex with small proteins, large high-density lipoproteins (HDLs), and exosomes. MiR-124 and miR-9 were promptly released from neurons, and this process was inhibited by tetrodotoxin, indicating an important role of neuronal electric activity in secretion of these microRNAs. Incubation of macrophages with exogenous miR-124 resulted in efficient translocation of miR-124 into the cytoplasm. This study demonstrates an important role of neuronal miRNAs in communication of neurons with microglia, which favors the hypothesis that microglia acquire a specific phenotype under the influence of the CNS microenvironment.


Subject(s)
Cell Communication/physiology , MicroRNAs/physiology , Microglia/physiology , Neurons/physiology , Animals , Astrocytes/metabolism , Astrocytes/physiology , Cells, Cultured , Exosomes/metabolism , Leukocyte Common Antigens , Lipoproteins/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Microglia/metabolism , Neurons/metabolism
4.
Genes (Basel) ; 9(10)2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30241368

ABSTRACT

The Asian seabass (Lates calcarifer) is a bony fish from the Latidae family, which is widely distributed in the tropical Indo-West Pacific region. The karyotype of the Asian seabass contains 24 pairs of A chromosomes and a variable number of AT- and GC-rich B chromosomes (Bchrs or Bs). Dot-like shaped and nucleolus-associated AT-rich Bs were microdissected and sequenced earlier. Here we analyzed DNA fragments from Bs to determine their repeat and gene contents using the Asian seabass genome as a reference. Fragments of 75 genes, including an 18S rRNA gene, were found in the Bs; repeats represented 2% of the Bchr assembly. The 18S rDNA of the standard genome and Bs were similar and enriched with fragments of transposable elements. A higher nuclei DNA content in the male gonad and somatic tissue, compared to the female gonad, was demonstrated by flow cytometry. This variation in DNA content could be associated with the intra-individual variation in the number of Bs. A comparison between the copy number variation among the B-related fragments from whole genome resequencing data of Asian seabass individuals identified similar profiles between those from the South-East Asian/Philippines and Indian region but not the Australian ones. Our results suggest that Bs might cause variations in the genome among the individuals and populations of Asian seabass. A personalized copy number approach for segmental duplication detection offers a suitable tool for population-level analysis across specimens with low coverage genome sequencing.

5.
Brain Behav Immun ; 74: 7-27, 2018 11.
Article in English | MEDLINE | ID: mdl-30217533

ABSTRACT

It is generally accepted that inflammation within the CNS contributes to neurodegeneration after traumatic brain injury (TBI), but it is not clear how inflammation is initiated in the absence of infection and whether this neuroinflammation is predominantly beneficial or detrimental. We have previously found that brain-enriched glycosphingolipids within neuronal lipid rafts (NLR) induced platelet degranulation and secretion of neurotransmitters and pro-inflammatory factors. In the present study, we compared TBI-induced inflammation and neurodegeneration in wild-type vs. St3gal5 deficient (ST3-/-) mice that lack major CNS-specific glycosphingolipids. After TBI, microglial activation and CNS macrophage infiltration were substantially reduced in ST3-/- animals. However, ST3-/- mice had a larger area of CNS damage with marked neuronal/axonal loss. The interaction of platelets with NLR stimulated neurite growth, increased the number of PSD95-positive dendritic spines, and intensified neuronal activity. Adoptive transfer and blocking experiments provide further that platelet-derived serotonin and platelet activating factor plays a key role in the regulation of sterile neuroinflammation, hemorrhage and neuronal plasticity after TBI.


Subject(s)
Blood Platelets/physiology , Neuroimmunomodulation/physiology , Neuronal Plasticity/physiology , Animals , Blood Platelets/metabolism , Brain/metabolism , Brain Injuries, Traumatic/physiopathology , Disease Models, Animal , Encephalitis/metabolism , Female , Glycolipids/metabolism , Glycolipids/physiology , Inflammation/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Neurons/physiology , Platelet Activating Factor/metabolism , Platelet Activating Factor/physiology , Serotonin/metabolism
6.
BMC Genomics ; 19(1): 151, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29458329

ABSTRACT

BACKGROUND: Chromocenters are defined as a punctate condensed blocks of chromatin in the interphase cell nuclei of certain cell types with unknown biological significance. In recent years a progress in revealing of chromocenters protein content has been made although the details of DNA content within constitutive heterochromatin still remain unclear. It is known that these regions are enriched in tandem repeats (TR) and transposable elements. Quick improvement of genome sequencing does not help to assemble the heterochromatic regions due to lack of appropriate bioinformatics techniques. RESULTS: Chromocenters DNA have been isolated by a biochemical approach from mouse liver cells nuclei and sequenced on the Illumina MiSeq resulting in ChrmC dataset. Analysis of ChrmC dataset by the bioinformatics tools available revealed that the major component of chromocenter DNA are TRs: ~ 66% MaSat and ~ 4% MiSat. Other previously classified TR families constitute ~ 1% of ChrmC dataset. About 6% of chromocenters DNA are mostly unannotated sequences. In the contigs assembled with IDBA_UD there are many fragments of heterochromatic Y-chromosome, rDNA and other pseudo-genes and non-coding DNA. A protein coding sfi1 homolog gene fragment was also found in contigs. The Sfi1 homolog gene is located on the chromosome 11 in the reference genome very close to the Golden Pass Gap (a ~ 3 Mb empty region reserved to the pericentromeric region) and proves the purity of chromocenters isolation. The second major fraction are non-LTR retroposons (SINE and LINE) with overwhelming majority of LINE - ~ 11% of ChrmC. Most of the LINE fragments are from the ~ 2 kb region at the end of the 2nd ORF and its' flanking region. The precise LINEs' segment of ~ 2 kb is the necessary mouse constitutive heterohromatin component together with TR. The third most abundant fraction are ERVs. The ERV distribution in chromocenters differs from the whole genome: IAP (ERV2 class) is the most numerous in ChrmC while MaLR (ERV3 class) prevails in the reference genome. IAP and its LTR also prevail in TR containing contigs extracted from the WGS dataset. In silico prediction of IAP and LINE fragments in chromocenters was confirmed by direct fluorescent in situ hybridization (FISH). CONCLUSION: Our data of chromocenters' DNA (ChrmC) sequencing demonstrate that IAP with LTR and a precise ~ 2 kb fragment of LINE represent a substantial fraction of mouse chromocenters (constitutive heteroсhromatin) along with TRs.


Subject(s)
Chromosomes, Mammalian , Heterochromatin/genetics , Animals , Chromosome Mapping , Computational Biology/methods , Databases, Nucleic Acid , Endogenous Retroviruses/genetics , Heterochromatin/metabolism , High-Throughput Nucleotide Sequencing , In Situ Hybridization, Fluorescence , Long Interspersed Nucleotide Elements , Mice , Molecular Sequence Annotation , Repetitive Sequences, Nucleic Acid , Tandem Repeat Sequences
7.
Front Immunol ; 9: 50, 2018.
Article in English | MEDLINE | ID: mdl-29422898

ABSTRACT

Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro, suggesting prevalence of indirect effect of Forskolin on differentiation and functions of autoimmune CD4 T cells in vivo. Thus, our data indicate that Forskolin has potency to skew balance toward M2 affecting ERK pathway in macrophages and indirectly inhibit pathogenic CD4 T cells in the CNS leading to the suppression of autoimmune inflammation. These data may have also implications for future therapeutic approaches to inhibit autoimmune Th1 cells at the site of tissue inflammation.


Subject(s)
Autoimmunity/drug effects , CD4-Positive T-Lymphocytes/immunology , Colforsin/pharmacology , Cyclic AMP/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Macrophages/classification , Macrophages/immunology , Animals , Arginase/biosynthesis , Autoimmunity/immunology , Cell Proliferation/drug effects , Cells, Cultured , Central Nervous System/immunology , Central Nervous System/pathology , Interferon-gamma/metabolism , Interleukin-4/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Membrane Glycoproteins/biosynthesis , Mice , Mice, Inbred C57BL , MicroRNAs/biosynthesis , MicroRNAs/genetics , Microglia/cytology , Microglia/immunology , Receptors, Cell Surface/biosynthesis , Receptors, Immunologic
9.
Sci Data ; 3: 160105, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27922628

ABSTRACT

Asian arowana (Scleropages formosus), an ancient teleost belonging to the Order Osteoglossomorpha, has been a valuable ornamental fish with some varieties. However, its biological studies and breeding germplasm have been remarkably limited by the lack of a reference genome. To solve these problems, here we report high-quality genome sequences of three common varieties of Asian arowana (the golden, red and green arowana). We firstly generated a chromosome-level genome assembly of the golden arowana, on basis of the genetic linkage map constructed with the restriction site-associated DNA sequencing (RAD-seq). In addition, we obtained draft genome assemblies of the red and green varieties. Finally, we annotated 22,016, 21,256 and 21,524 protein-coding genes in the genome assemblies of golden, red and green varieties respectively. Our data were deposited in publicly accessible repositories to promote biological research and molecular breeding of Asian arowana.


Subject(s)
Chromosome Mapping , Fishes/genetics , Genetic Linkage , Animals , Chromosomes/genetics , DNA Shuffling , Genome , Sequence Analysis, DNA
10.
PLoS Genet ; 12(4): e1005954, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27082250

ABSTRACT

We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics.


Subject(s)
Bass/genetics , Chromosome Mapping , Animals , Bass/classification , Genome , In Situ Hybridization, Fluorescence , Phylogeny
11.
Sci Rep ; 6: 24501, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27089831

ABSTRACT

The Asian arowana (Scleropages formosus), one of the world's most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas.


Subject(s)
Evolution, Molecular , Fishes/genetics , Genome , Phylogeny , Animals , Female , Microsatellite Repeats/genetics , Sex Chromosomes/genetics
12.
Chromosome Res ; 24(3): 309-23, 2016 09.
Article in English | MEDLINE | ID: mdl-27116673

ABSTRACT

Chromocenters are interphase nuclear landmark structures of constitutive heterochromatin. The tandem repeat (TR)-enriched parts of different chromosomes cluster together in chromocenters. There has been progress in recent years in determining the protein content of chromocenters, although it is not clear which DNA sequences underly constitutive heterochromatin apart from the TRs. The aim of the current work was to find out which DNA sequences besides TRs are involved in chromocenters' formation. Biochemically isolated chromocenters and microdissected centromeric regions were amplified by DOP-PCR, then cloned and sequenced. Alignment to Repbase, the mouse reference genome and WGS databases separated the sequences from both libraries into three groups: (1) sequences with similarity to pericentromere mouse major satellite; (2) sequences without similarity to any repetitive sequences; (3) sequences with similarity to long interspersed nuclear elements (LINEs). LINE-related sequences have a disperse pattern distribution on chromosomes predicted in silico. Selected clones were used for fluorescent in situ hybridization (FISH). The 10 clones tested hybridized to chromocenters and centromeric regions of metaphase chromosomes. These clones were used for double FISH with four known cloned TRs (satDNA, satellite DNA) and a probe specific for the sex chromosomes. The probes bind various chromocenters' regions without overlapping; so, FISH results reveal a complex chromocenter composition. We mapped 18 LINE-derived clones to the RepBase L1 records. Most of them grouped in a ∼2-kb region at the end of the second ORF and 3' untranslated region (UTR). So, even the limited number of the clones allows us to determine the region of the L1 element that is specific for heterochromatic regions. Although the L1 full-length probe did not hybridize at detectable levels to the heterochromatic region on any chromosome, the 2-kb fragment found is definitely a part of these regions. The precise LINE ∼2-kb fragment is the component of mouse and human constitutive heterochromatin enriched with TRs. The method used for amplification of the probes from two sources of the heterochromatic material uncovered the enrichment of a precise fragment of LINE within chromocenters.


Subject(s)
Genome/genetics , Heterochromatin/genetics , Long Interspersed Nucleotide Elements/genetics , Tandem Repeat Sequences/genetics , 3' Untranslated Regions/genetics , Animals , Cell Line , Cloning, Molecular , DNA Probes/genetics , DNA, Satellite/genetics , Databases, Genetic , Fibroblasts/cytology , Humans , In Situ Hybridization, Fluorescence , Mice , Mice, Inbred C3H , Open Reading Frames/genetics , Sequence Analysis, DNA
13.
Br J Haematol ; 172(2): 219-27, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26567890

ABSTRACT

A number of studies have demonstrated induction of the unfolded protein response (UPR) in patients with severe congenital neutropenia (CN) harbouring mutations of ELANE, encoding neutrophil elastase. Why UPR is not activated in patients with cyclic neutropenia (CyN) carrying the same ELANE mutations is unclear. We evaluated the effects of ELANE mutants on UPR induction in myeloid cells from CN and CyN patients, and analysed whether additional CN-specific defects contribute to the differences in UPR induction between CN and CyN patients harbouring identical ELANE mutations. We investigated CN-specific p.C71R and p.V174_C181del (NP_001963.1) and CN/CyN-shared p.S126L (NP_001963.1) ELANE mutants. We found that transduction of haematopoietic cells with p.C71R, but not with p.V174_C181del or p.S126L ELANE mutants induced expression of ATF6, and the ATF6 target genes PPP1R15A, DDIT3 and HSPA5. Recently, we found that levels of secretory leucocyte protease inhibitor (SLPI), a natural ELANE inhibitor, are diminished in myeloid cells from CN patients, but not CyN patients. Combined knockdown of SLPI by shRNA and transduction of ELANE p.S126L in myeloid cells led to elevated levels of ATF6, PPP1R15A and HSPA5 RNA, suggesting that normal levels of SLPI in CyN patients might protect them from the UPR induced by mutant ELANE. In summary, different ELANE mutants have different effects on UPR activation, and SLPI regulates the extent of ELANE-triggered UPR.


Subject(s)
Leukocyte Elastase/genetics , Mutation , Neutropenia/congenital , Unfolded Protein Response/genetics , Activating Transcription Factor 4/biosynthesis , Activating Transcription Factor 6/biosynthesis , CCAAT-Enhancer-Binding Proteins/physiology , Case-Control Studies , Congenital Bone Marrow Failure Syndromes , Endoplasmic Reticulum Chaperone BiP , Gene Expression Regulation/physiology , Humans , Myeloid Cells/metabolism , Neutropenia/genetics , Neutropenia/metabolism , RNA, Messenger/genetics , eIF-2 Kinase/biosynthesis
14.
Front Genet ; 5: 223, 2014.
Article in English | MEDLINE | ID: mdl-25120555

ABSTRACT

As part of our Asian seabass genome project, we are generating an inventory of repeat elements in the genome and transcriptome. The karyotype showed a diploid number of 2n = 24 chromosomes with a variable number of B-chromosomes. The transcriptome and genome of Asian seabass were searched for repetitive elements with experimental and bioinformatics tools. Six different types of repeats constituting 8-14% of the genome were characterized. Repetitive elements were clustered in the pericentromeric heterochromatin of all chromosomes, but some of them were preferentially accumulated in pretelomeric and pericentromeric regions of several chromosomes pairs and have chromosomes specific arrangement. From the dispersed class of fish-specific non-LTR retrotransposon elements Rex1 and MAUI-like repeats were analyzed. They were wide-spread both in the genome and transcriptome, accumulated on the pericentromeric and peritelomeric areas of all chromosomes. Every analyzed repeat was represented in the Asian seabass transcriptome, some showed differential expression between the gonads. The other group of repeats analyzed belongs to the rRNA multigene family. FISH signal for 5S rDNA was located on a single pair of chromosomes, whereas that for 18S rDNA was found on two pairs. A BAC-derived contig containing rDNA was sequenced and assembled into a scaffold containing incomplete fragments of 18S rDNA. Their assembly and chromosomal position revealed that this part of Asian seabass genome is extremely rich in repeats containing evolutionarily conserved and novel sequences. In summary, transcriptome assemblies and cDNA data are suitable for the identification of repetitive DNA from unknown genomes and for comparative investigation of conserved elements between teleosts and other vertebrates.

15.
PLoS One ; 9(2): e88071, 2014.
Article in English | MEDLINE | ID: mdl-24505380

ABSTRACT

Acute kidney injury is a major clinical problem and advanced age is associated with ineffective renal regeneration and poor functional outcome. Data from kidney injury models suggest that a loss of tubular epithelial proliferation contributes to a decrease in renal repair capacity with aging, but aging can also lead to a higher severity of inflammation and damage which may influence repair. In this study we tested intrinsic age-dependent changes in tubular epithelial proliferation in young and old mice, by injecting low-dose lead acetate as a non-injurious mitogen. In parallel, we explored in vitro techniques of studying cellular senescence in primary tubular epithelial cells (PTEC). Lead acetate induced tubular epithelial proliferation at a significantly higher rate in young as compared to old mice. Old kidneys showed significantly more senescence as demonstrated by increased p16 (INK4a), senescence associated ß-galactosidase, and γH2AX(+)/Ki-67(-) cells. This was paralleled in old kidneys by a higher number of Cyclin D1 positive tubular cells. This finding was corroborated by a positive correlation between Cyclin D1 positivity and age in human renal biopsies. When tubular cells were isolated from mouse kidneys they rapidly lost their age-associated differences under culture conditions. However, senescence was readily induced in PTEC by γ-irradiation representing a future model for study of cellular senescence in the renal epithelium. Together, our data indicate that the tubular epithelium of aged kidney has an intrinsically reduced proliferative capacity probably due to a higher load of senescent cells. Moreover, stress induced models of cellular senescence are preferable for study of the renal epithelium in vitro. Finally, the positive correlation of Cyclin D1 with age and cellular senescence in PTEC needs further evaluation as to a functional role of renal epithelial aging.


Subject(s)
Aging/physiology , Cellular Senescence/physiology , Epithelial Cells/physiology , Kidney Tubules/physiology , Acute Kidney Injury/genetics , Acute Kidney Injury/physiopathology , Aging/genetics , Animals , Cell Proliferation , Cells, Cultured , Cellular Senescence/genetics , Cyclin D1/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Epithelium/physiology , Histones/genetics , Ki-67 Antigen/genetics , Male , Mice , Mice, Inbred C57BL , Regeneration/genetics , Regeneration/physiology , beta-Galactosidase/genetics
16.
Blood ; 123(16): 2550-61, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24394665

ABSTRACT

The transcription factor lymphoid enhancer-binding factor 1 (LEF-1), which plays a definitive role in granulocyte colony-stimulating factor (G-CSF) receptor-triggered granulopoiesis, is downregulated in granulocytic progenitors of severe congenital neutropenia (CN) patients. However, the exact mechanism of LEF-1 downregulation is unclear. CN patients are responsive to therapeutically high doses of G-CSF and are at increased risk of developing acute myeloid leukemia. The normal expression of LEF-1 in monocytes and lymphocytes, whose differentiation is unaffected in CN, suggests the presence of a granulopoiesis-specific mechanism downstream of G-CSF receptor signaling that leads to LEF-1 downregulation. Signal transducer and activator of transcription 5 (STAT5) is activated by G-CSF and is hyperactivated in acute myeloid leukemia. Here, we investigated the effects of activated STAT5 on LEF-1 expression and functions in hematopoietic progenitor cells. We demonstrated that constitutively active STAT5a (caSTAT5a) inhibited LEF-1-dependent autoregulation of the LEF-1 gene promoter by binding to the LEF-1 protein, recruiting Nemo-like kinase and the E3 ubiquitin-ligase NARF to LEF-1, leading to LEF-1 ubiquitination and a reduction in LEF-1 protein levels. The proteasome inhibitor bortezomib reversed the defective G-CSF-triggered granulocytic differentiation of CD34(+) cells from CN patients in vitro, an effect that was accompanied by restoration of LEF-1 protein levels and LEF-1 messenger RNA autoregulation. Taken together, our data define a novel mechanism of LEF-1 downregulation in CN patients via enhanced ubiquitination and degradation of LEF-1 protein by hyperactivated STAT5.


Subject(s)
Boronic Acids/pharmacology , Cell Differentiation/drug effects , Granulocytes/drug effects , Hematopoietic Stem Cells/drug effects , Lymphoid Enhancer-Binding Factor 1/metabolism , Neutropenia/congenital , Proteolysis/drug effects , Pyrazines/pharmacology , Antigens, CD34/metabolism , Bortezomib , Cell Differentiation/genetics , Cells, Cultured , Congenital Bone Marrow Failure Syndromes , Granulocytes/pathology , Granulocytes/physiology , HEK293 Cells , Hematopoiesis/drug effects , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/physiology , Humans , Lymphoid Enhancer-Binding Factor 1/genetics , Neutropenia/genetics , Neutropenia/metabolism , Neutropenia/pathology , STAT5 Transcription Factor/physiology
17.
Chromosome Res ; 13(1): 9-25, 2005.
Article in English | MEDLINE | ID: mdl-15791408

ABSTRACT

Genomic databases do not contain complete sequences of the centromeric regions. We created a pUC19-based library of DNA fragments from isolated chromocentres of interphase nuclei. In this library we have found major satellite (MaSat) and two new satellite sequences - MS3 and MS4. The computer analysis of MS3 and MS4 sequences by alignment, fragment curved state and search for MAR motifs in comparison with the mouse major and minor satellite (MiSat) DNA has shown them to be new satellite fragments. Southern blot of MS3 and MS4 with total DNA digested by restriction enzymes shows the ladder characteristic of satellite DNA. 2.2% of the total DNA consists of MS3, the monomer of which is 150 bp long. The MS4 monomer is 300 bp long and accounts for 1.6% of the total DNA. On metaphase chromosomes MS3 and MS4 are located at the centromeric region. FISH analysis of L929 nuclei during the cell cycle showed relative positions of MaSat, MiSat, MS3, and MS4. All mapped satDNA fragments except MaSat belong to the outer layer of the chromocentres in the G0/G1 phase. MS3 is likely to be involved in the centromere formation. The mouse genome contains at least four satDNA types: AT-rich (MaSat and MiSat), and CG-rich (MS3 and MS4).


Subject(s)
Centromere/genetics , DNA, Satellite/genetics , Heterochromatin/genetics , Repetitive Sequences, Nucleic Acid/genetics , Animals , Base Sequence , Blotting, Southern , Chromosomes/genetics , Cloning, Molecular , Female , Fibroblasts/cytology , Fibroblasts/physiology , Gene Library , Genetic Variation , Hepatocytes/cytology , Hepatocytes/physiology , In Situ Hybridization, Fluorescence , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Molecular Sequence Data , Nucleic Acid Hybridization , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...