Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Phys Chem Chem Phys ; 25(26): 17571-17582, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37365886

ABSTRACT

In this article, we report the results of a relatively facile fabrication of carbon nanodots from single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs). The results of X-ray photoelectron spectroscopy (XPS) and Raman measurements show that the obtained carbon nanodots are quasi-two-dimensional objects with a diamond-like structure. Based on the characterization results, a theoretical model of the synthesized carbon nanodots was developed. The measured absorption spectra demonstrate the similarity in the local atomic structure of carbon nanodots synthesized from single-walled and multi-walled carbon nanotubes. However, the photoluminescence (PL) spectra of nanodots synthesized from both sources turned out to be completely different. Carbon dots fabricated from MWCNTs exhibit PL spectra similar to those of nanoscale carbon systems with sp3 hybridization and a valuable edge contribution. At the same time nanodots synthesized from SWCNTs exhibit PL spectra which are typical for quantum dots with an estimated size of ∼0.6-1.3 nm.

2.
Phys Chem Chem Phys ; 23(40): 23184-23195, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34622256

ABSTRACT

The emission centers and excited state characteristics of silica glasses implanted with Gd ions were studied by time-resolved pulsed cathodoluminescence. It was found that in the process of ion implantation, two types of new emission centers associated with Gd ions as well as Si quantum dots are formed in glassy silica. The distributions of excited states over the lifetime were found for both new centers and Si quantum dots. The nature of dispersion of the emission decay time was discussed in terms of structural disorder in the matrix. Thermal annealing and an increase in the ion fluence lead to the stimulation of the formation of Gd-related new centers and Si quantum dots. The micromechanisms for the formation of new Gd-related centers and two types of Si quantum dots were proposed on the basis of two scenarios for the introduction of Gd ions into the SiO2 network: insertion of Gd into interstitial voids near oxygen-deficient centers and Gd → Si substitution with subsequent expulsion of Si atoms to the interstitial voids. New emission oxygen-deficient centers and quantum dots created by ion-beam technology in silica glasses are of interest for the development of new functional materials for photonics, and micro- and opto-electronics.

3.
Phys Chem Chem Phys ; 21(45): 25467-25473, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31714553

ABSTRACT

In this work we present an innovative method of creating Si quantum dots under pulsed ion-beam exposure. The evolution of defect structure ODC(II) → E'→ ODC(I) → Si QDs in glassy SiO2 under ion-beam implantation was established by optical absorption and photoluminescence spectroscopies. Depending on the mode of ion exposure, it is possible to easily control the type and concentration of defects in the host and modify its optical properties for novel applications. Ab initio calculations confirm that bond softening in SiO2 is attainable via the use of Gd ion implantation. According to our experimental and theoretical results, the three-stage interaction of primary oxygen-deficient centers leads to the formation of stable silicon quantum dots with a size of 3.6 nm and luminescence at 1.8 eV excited by incoherent light.

4.
Adv Gerontol ; 30(3): 457-467, 2017.
Article in Russian | MEDLINE | ID: mdl-28849894

ABSTRACT

The changes of bone marrow cells (BMC) number in the primary culture from 0 to 96 hours, the pattern (the distribution of cells) of cells morphotypes and «lifespan¼ (the time of cell life after isolation) of myelocytes, metamyelocytes, band and segmented neutrophils, isolated of the young (3 months) and old (20months) animals, were investigated. The number of the BMC obtained from intact old animals increased faster in primary culture, than from young animals. The Cu induced fibrosis had different influence on the rate of BMC culture growth of old and young animals. The adding of 4 mM and 8 mM CuSO4x5H2O in the BMC culture of young and old animals resulted in a dose-dependent inhibition of growth rate of young animal cells. If copper ions were added into the culture of BMC of old animals, the decreased of the BMC number was described less than for cells of young animals. The adding of 8 mM CuSO4x5H2O inhibited proliferation less, than the adding of 4 mM CuSO4x5H2O. The Cu-induced liver fibrosis had accelerated the BMC rate death of both old and young animals. However, this effect was more pronounced in young animals. It is suggested, that during the ontogenesis the BMC undergo such epigenetic changes, which change functional properties.


Subject(s)
Age Factors , Bone Marrow Cells/cytology , Tissue Donors , Animals , Cell Count , Copper/toxicity , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...