Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8052, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609428

ABSTRACT

Ehlers-Danlos syndrome spondylodysplastic type 3 (EDSSPD3, OMIM 612350) is an inherited recessive connective tissue disorder that is caused by loss of function of SLC39A13/ZIP13, a zinc transporter belonging to the Slc39a/ZIP family. We previously reported that patients with EDSSPD3 harboring a homozygous loss of function mutation (c.221G > A, p.G64D) in ZIP13 exon 2 (ZIP13G64D) suffer from impaired development of bone and connective tissues, and muscular hypotonia. However, whether ZIP13 participates in the early differentiation of these cell types remains unclear. In the present study, we investigated the role of ZIP13 in myogenic differentiation using a murine myoblast cell line (C2C12) as well as patient-derived induced pluripotent stem cells (iPSCs). We found that ZIP13 gene expression was upregulated by myogenic stimulation in C2C12 cells, and its knockdown disrupted myotubular differentiation. Myocytes differentiated from iPSCs derived from patients with EDSSPD3 (EDSSPD3-iPSCs) also exhibited incomplete myogenic differentiation. Such phenotypic abnormalities of EDSSPD3-iPSC-derived myocytes were corrected by genomic editing of the pathogenic ZIP13G64D mutation. Collectively, our findings suggest the possible involvement of ZIP13 in myogenic differentiation, and that EDSSPD3-iPSCs established herein may be a promising tool to study the molecular basis underlying the clinical features caused by loss of ZIP13 function.


Subject(s)
Carrier Proteins , Ehlers-Danlos Syndrome , Osteochondrodysplasias , Animals , Humans , Mice , Cell Differentiation/genetics
2.
J Biol Chem ; 300(2): 105632, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199573

ABSTRACT

We previously reported that bakuchiol, a phenolic isoprenoid anticancer compound, and its analogs exert anti-influenza activity. However, the proteins targeted by bakuchiol remain unclear. Here, we investigated the chemical structures responsible for the anti-influenza activity of bakuchiol and found that all functional groups and C6 chirality of bakuchiol were required for its anti-influenza activity. Based on these results, we synthesized a molecular probe containing a biotin tag bound to the C1 position of bakuchiol. With this probe, we performed a pulldown assay for Madin-Darby canine kidney cell lysates and purified the specific bakuchiol-binding proteins with SDS-PAGE. Using nanoLC-MS/MS analysis, we identified prohibitin (PHB) 2, voltage-dependent anion channel (VDAC) 1, and VDAC2 as binding proteins of bakuchiol. We confirmed the binding of bakuchiol to PHB1, PHB2, and VDAC2 in vitro using Western blot analysis. Immunofluorescence analysis showed that bakuchiol was bound to PHBs and VDAC2 in cells and colocalized in the mitochondria. The knockdown of PHBs or VDAC2 by transfection with specific siRNAs, along with bakuchiol cotreatment, led to significantly reduced influenza nucleoprotein expression levels and viral titers in the conditioned medium of virus-infected Madin-Darby canine kidney cells, compared to the levels observed with transfection or treatment alone. These findings indicate that reducing PHBs or VDAC2 protein, combined with bakuchiol treatment, additively suppressed the growth of influenza virus. Our findings indicate that bakuchiol exerts anti-influenza activity via a novel mechanism involving these mitochondrial proteins, providing new insight for developing anti-influenza agents.


Subject(s)
Antiviral Agents , Influenza, Human , Phenols , Animals , Dogs , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Mitochondrial Proteins/metabolism , Prohibitins , Tandem Mass Spectrometry , Voltage-Dependent Anion Channel 1 , Voltage-Dependent Anion Channel 2/metabolism , Voltage-Dependent Anion Channels , Cell Line
3.
Biol Pharm Bull ; 46(9): 1231-1239, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37357386

ABSTRACT

Personal protective equipment (PPE), including medical masks, should be worn for preventing the transmission of respiratory pathogens via infective droplets and aerosols. In medical masks, the key layer is the filter layer, and the melt-blown nonwoven fabric (NWF) is the most used fabric. However, the NWF filter layer cannot kill or inactivate the pathogens spread via droplets and aerosols. Povidone-iodine (PVP-I) has been used as an antiseptic solution given its potent broad-spectrum activity against pathogens. To develop PPE (e.g., medical masks) with anti-pathogenic activity, we integrated PVP-I into nylon-66 NWF. We then evaluated its antiviral activity against influenza A viruses by examining the viability of Madin-Darby canine kidney (MDCK) cells after inoculation with the virus strains exposed to the PVP-I-integrated nylon-66 NWF. The PVP-I nylon-66 NWF protected the MDCK cells from viral infection in a PVP-I concentration-dependent manner. Subsequently, we found to integrate PVP-I into nylon-66 and polyurethane materials among various materials. These PVP-I materials were also effective against influenza virus infection, and treatment with PVP-I nylon-66 NWF showed the highest cell survival among all the tested materials. PVP-I showed anti-influenza A virus activity when used in conjunction with PPE materials. Moreover, nylon-66 NWF integrated with PVP-I was found to be the best material to ensure anti-influenza activity. Therefore, PVP-I-integrated masks could have the potential to inhibit respiratory virus infection. Our results provide new information for developing multi-functional PPEs with anti-viral activity by integrating them with PVP-I to prevent the potential transmission of respiratory viruses.


Subject(s)
Influenza, Human , Orthomyxoviridae , Animals , Dogs , Humans , Povidone-Iodine/pharmacology , Povidone-Iodine/therapeutic use , Nylons , Respiratory Aerosols and Droplets , Influenza, Human/prevention & control
4.
Methods Mol Biol ; 2582: 269-280, 2023.
Article in English | MEDLINE | ID: mdl-36370356

ABSTRACT

Human-induced pluripotent stem cells (hiPSCs) are useful tools to examine human neuronal maturation processes. In this chapter, we describe the maturation of human neuronal precursor cells derived from hiPSCs by cellular communication network family member 2, also known as connective tissue growth factor. We describe the (1) preparation of feeder cells for undifferentiated culture of hiPSCs, (2) undifferentiated culture of hiPSCs, (3) induction of neuronal precursor cells from hiPSCs, (4) maturation of neuronal precursor cells from hiPSCs, (5) immunofluorescent staining of neuronal cells from hiPSCs, and (6) immunofluorescence analysis.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/pharmacology , Connective Tissue Growth Factor/metabolism , Feeder Cells , Neurons , Cell Communication , Cell Differentiation
5.
FASEB J ; 36(11): e22593, 2022 11.
Article in English | MEDLINE | ID: mdl-36251357

ABSTRACT

In eukaryotes, CREB-binding protein (CBP), a coactivator of CREB, functions both as a platform for recruiting other components of the transcriptional machinery and as a histone acetyltransferase (HAT) that alters chromatin structure. We previously showed that the transcriptional activity of cAMP-responsive element binding protein (CREB) plays a crucial role in neuronal plasticity in the pond snail Lymnaea stagnalis. However, there is no information on the molecular structure and HAT activity of CBP in the Lymnaea central nervous system (CNS), hindering an investigation of its postulated role in long-term memory (LTM). Here, we characterize the Lymnaea CBP (LymCBP) gene and identify a conserved domain of LymCBP as a functional HAT. Like CBPs of other species, LymCBP possesses functional domains, such as the KIX domain, which is essential for interaction with CREB and was shown to regulate LTM. In-situ hybridization showed that the staining patterns of LymCBP mRNA in CNS are very similar to those of Lymnaea CREB1. A particularly strong LymCBP mRNA signal was observed in the cerebral giant cell (CGC), an identified extrinsic modulatory interneuron of the feeding circuit, the key to both appetitive and aversive LTM for taste. Biochemical experiments using the recombinant protein of the LymCBP HAT domain showed that its enzymatic activity was blocked by classical HAT inhibitors. Preincubation of the CNS with such inhibitors blocked cAMP-induced synaptic facilitation between the CGC and an identified follower motoneuron of the feeding system. Taken together, our findings suggest a role for the HAT activity of LymCBP in synaptic plasticity in the feeding circuitry.


Subject(s)
CREB-Binding Protein , Lymnaea , Animals , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Central Nervous System/metabolism , Chromatin/metabolism , Lymnaea/genetics , Lymnaea/metabolism , RNA, Messenger/metabolism , Recombinant Proteins/metabolism
6.
Methods Mol Biol ; 2556: 69-78, 2022.
Article in English | MEDLINE | ID: mdl-36175628

ABSTRACT

The endonuclease activity of influenza A virus RNA polymerase allows the digestion of host mRNA. The PA endonuclease domain could be a target of anti-influenza A virus drugs such as glycoconjugates. To test this activity, purified viral PA endonuclease domain protein is necessary. Here, we describe a method for the expression and purification of recombinant influenza A virus PA endonuclease domain protein, and a PA endonuclease assay to test glycoconjugates for potential inhibitory activity. Using influenza A virus PA cDNA as a template, DNA from the open reading frame of the PA endonuclease domain protein was amplified with PCR and cloned into an expression vector. Six His-tagged PA endonuclease domain proteins were expressed in Escherichia coli and purified with Ni2+-agarose resin and imidazole using an ion-exchange column. Using the recombinant PA endonuclease domain protein, an endonuclease assay was performed.


Subject(s)
Glycomics , Influenza A virus , DNA, Complementary , DNA-Directed RNA Polymerases , Endonucleases/genetics , Escherichia coli/genetics , Imidazoles , Influenza A virus/genetics , Sepharose
7.
Biol Pharm Bull ; 45(12): 1784-1790, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36155550

ABSTRACT

trans-Banglene and cis(c)-banglene possess neurotrophin-like activity in rat neurons. However, the molecular mechanisms underlying t-banglene-induced neurotrophic activity in rat and human neurons remain unclear. Here, we performed transcriptome analysis in PC12 cells, a rat adrenal gland pheochromocytoma cell line treated with t-banglene, using comprehensive RNA sequencing. The differentially expressed gene analysis of the sequencing data revealed that the expression of RT1 class I, locus CE1 (RT1-CE1) was upregulated, and that of ATP binding cassette subfamily A member 1 (abca1), myosin light chain 6, and hippocampus abundant transcript 1 was downregulated in t-banglene-treated PC12 cells, with statistically significant differences. We also confirmed the RT1-CE1 upregulation and abca1 downregulation in t-banglene-treated PC12 cells by real-time reverse transcription quantitative PCR. RT1-CEl is a major histocompatibility complex class I (MHCI) protein. ABCAl is a major cholesterol transporter that regulates efflux of intracellular cholesterol and phospholipids. Thus, our results suggest an exciting link between MHCI, cholesterol regulation, and neural development.


Subject(s)
ATP-Binding Cassette Transporters , Cholesterol , Animals , Humans , Rats , PC12 Cells , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Cholesterol/metabolism , Up-Regulation , Gene Expression Profiling , ATP Binding Cassette Transporter 1/genetics
8.
FEBS J ; 289(1): 231-245, 2022 01.
Article in English | MEDLINE | ID: mdl-34270849

ABSTRACT

The post-translational acetylation of lysine residues is found in many nonhistone proteins and is involved in a wide range of biological processes. Recently, we showed that the nucleoprotein of the influenza A virus is acetylated by histone acetyltransferases (HATs), a phenomenon that affects viral transcription. Here, we report that the PA subunit of influenza A virus RNA-dependent RNA polymerase is acetylated by the HATs, P300/CREB-binding protein-associated factor (PCAF), and general control nonderepressible 5 (GCN5), resulting in accelerated endonuclease activity. Specifically, the full-length PA subunit expressed in cultured 293T cells was found to be strongly acetylated. Moreover, the partial recombinant protein of the PA N-terminal region containing the endonuclease domain was also acetylated by PCAF and GCN5 in vitro, which facilitated its endonuclease activity. Mass spectrometry analyses identified K19 as a candidate acetylation target in the PA N-terminal region. Notably, the substitution of the lysine residue at position 19 with glutamine, a mimic of the acetyl-lysine residue, enhanced its endonuclease activity in vitro; this point mutation also accelerated influenza A virus RNA-dependent RNA polymerase activity in the cell. Our findings suggest that PA acetylation is important for the regulation of the endonuclease and RNA polymerase activities of the influenza A virus.


Subject(s)
Histone Acetyltransferases/genetics , Influenza A virus/genetics , Influenza, Human/genetics , RNA-Dependent RNA Polymerase/genetics , p300-CBP Transcription Factors/genetics , Acetylation , Amino Acid Sequence/genetics , Humans , Influenza, Human/virology , Nucleoproteins/genetics , Protein Binding/genetics , Protein Processing, Post-Translational/genetics , RNA, Viral/genetics , Viral Proteins/genetics , Viral Transcription/genetics
9.
Biochem Biophys Res Commun ; 557: 273-279, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33894414

ABSTRACT

Recently, the novel coronavirus (SARS-CoV-2), which has spread from China to the world, was declared a global public health emergency, which causes lethal respiratory infections. Acetylation of several proteins plays essential roles in various biological processes, such as viral infections. We reported that the nucleoproteins of influenza virus and Zaire Ebolavirus were acetylated, suggesting that these modifications contributed to the molecular events involved in viral replication. Similar to influenza virus and Ebolavirus, the coronavirus also contains single-stranded RNA, as its viral genome interacts with the nucleocapsid (N) proteins. In this study, we report that SARS-CoV and SARS-CoV-2 N proteins are strongly acetylated by human histone acetyltransferases, P300/CBP-associated factor (PCAF), and general control nonderepressible 5 (GCN5), but not by CREB-binding protein (CBP) in vitro. Liquid chromatography-mass spectrometry analyses identified 2 and 12 acetyl-lysine residues from SARS-CoV and SARS-CoV-2 N proteins, respectively. Particularly in the SARS-CoV-2 N proteins, the acetyl-lysine residues were localized in or close to several functional sites, such as the RNA interaction domains and the M-protein interacting site. These results suggest that acetylation of SARS-CoV-2 N proteins plays crucial roles in their functions.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Histone Acetyltransferases/metabolism , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , CREB-Binding Protein/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Humans , Models, Molecular , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2/chemistry
10.
PLoS One ; 16(3): e0248960, 2021.
Article in English | MEDLINE | ID: mdl-33770117

ABSTRACT

Novel antiviral agents for influenza, which poses a substantial threat to humans, are required. Cyclobakuchiols A and B have been isolated from Psoralea glandulosa, and cyclobakuchiol C has been isolated from P. corylifolia. The structural differences between cyclobakuchiol A and C arise due to the oxidation state of isopropyl group, and these compounds can be derived from (+)-(S)-bakuchiol, a phenolic isoprenoid compound present in P. corylifolia seeds. We previously reported that bakuchiol induces enantiospecific anti-influenza A virus activity involving nuclear factor erythroid 2-related factor 2 (Nrf2) activation. However, it remains unclear whether cyclobakuchiols A-C induce anti-influenza A virus activity. In this study, cyclobakuchiols A, B, and C along with cyclobakuchiol D, a new artificial compound derived from cyclobakuchiol B, were synthesized and examined for their anti-influenza A virus activities using Madin-Darby canine kidney cells. As a result, cyclobakuchiols A-D were found to inhibit influenza A viral infection, growth, and the reduction of expression of viral mRNAs and proteins in influenza A virus-infected cells. Additionally, these compounds markedly reduced the mRNA expression of the host cell influenza A virus-induced immune response genes, interferon-ß and myxovirus-resistant protein 1. In addition, cyclobakuchiols A-D upregulated the mRNA levels of NAD(P)H quinone oxidoreductase 1, an Nrf2-induced gene, in influenza A virus-infected cells. Notably, cyclobakuchiols A, B, and C, but not D, induced the Nrf2 activation pathway. These findings demonstrate that cyclobakuchiols have anti-influenza viral activity involving host cell oxidative stress response. In addition, our results suggest that the suitably spatial configuration between oxidized isopropyl group and phenol moiety in the structure of cyclobakuchiols is required for their effect.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Chemistry Techniques, Synthetic , Cyclohexanes/chemical synthesis , Cyclohexanes/pharmacology , Influenza A virus/drug effects , Animals , Antiviral Agents/chemistry , Cell Survival/drug effects , Cyclohexanes/chemistry , Cyclohexanes/toxicity , Dogs , Gene Expression Regulation, Viral/drug effects , Host-Pathogen Interactions/drug effects , Image Processing, Computer-Assisted , Influenza A virus/growth & development , Interferon-beta/genetics , Interferon-beta/metabolism , Madin Darby Canine Kidney Cells , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Proteins/metabolism
11.
PLoS One ; 16(1): e0244885, 2021.
Article in English | MEDLINE | ID: mdl-33449947

ABSTRACT

Human influenza virus infections occur annually worldwide and are associated with high morbidity and mortality. Hence, development of novel anti-influenza drugs is urgently required. Rice Power® extract developed by the Yushin Brewer Co. Ltd. is a novel aqueous extract of rice obtained via saccharization and fermentation with various microorganisms, such as Aspergillus oryzae, yeast [such as Saccharomyces cerevisiae], and lactic acid bacteria, possessing various biological and pharmacological properties. In our previous experimental screening with thirty types of Rice Power® extracts, we observed that the 30th Rice Power® (Y30) extract promoted the survival of influenza A virus-infected Madin-Darby canine kidney (MDCK) cells. Therefore, to identify compounds for the development of novel anti-influenza drugs, we aimed to investigate whether the Y30 extract exhibits anti-influenza A virus activity. In the present study, we demonstrated that the Y30 extract strongly promoted the survival of influenza A H1N1 Puerto Rico 8/34 (A/PR/8/34), California 7/09, or H3N2 Aichi 2/68 (A/Aichi/2/68) viruses-infected MDCK cells and inhibited A/PR/8/34 or A/Aichi/2/68 viruses infection and growth in the co-treatment and pre-infection experiments. The pre-treatment of Y30 extract on MDCK cells did not induce anti-influenza activity in the cell. The Y30 extract did not significantly affect influenza A virus hemagglutination, and neuraminidase and RNA-dependent RNA polymerase activities. Interestingly, the electron microscopy experiment revealed that the Y30 extract disrupts the integrity of influenza A virus particles by permeabilizing the viral membrane envelope, suggesting that Y30 extract has a direct virucidal effect against influenza A virus. Furthermore, we observed that compared to the ethyl acetate (EtOAc) extract, the water extract of Y30 extract considerably promoted the survival of cells infected with A/PR/8/34 virus. These results indicated that more anti-influenza components were present in the water extract of Y30 extract than in the EtOAc extract. Our results highlight the potential of a rice extract fermented with A. oryzae and S. cerevisiae as an anti-influenza medicine and a drug source for the development of anti-influenza compounds.


Subject(s)
Aspergillus oryzae/metabolism , Influenza A virus/drug effects , Oryza/chemistry , Oryza/microbiology , Plant Extracts/pharmacology , Saccharomyces cerevisiae/metabolism , Water/chemistry , Acetates/chemistry , Animals , Antiviral Agents/pharmacology , Dogs , Fermentation , Influenza A virus/growth & development , Influenza A virus/physiology , Madin Darby Canine Kidney Cells , Microbial Viability/drug effects
12.
Biochem Biophys Res Commun ; 519(2): 309-315, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31506177

ABSTRACT

Jiadifenolide has been reported to have neurotrophin-like activity in primary rat cortical neurons, and also possesses neurotrophic effects in neuronal precursor cells derived from human induced pluripotent stem cells (hiPSCs), as we have previously reported. However, the molecular mechanisms by which jiadifenolide exerts its neurotrophic effects in rat and human neurons are unknown. Thus, we aimed to investigate the molecular mechanisms and pathways by which jiadifenolide promotes neurotrophic effects. Here, we found that jiadifenolide activated cellular communication network factor (CCN) signaling pathways by up-regulating mRNA level expression of CCN genes in human neuronal cells. We also found that CCN2 (also known as connective tissue growth factor, CTGF) protein promotes neurotrophic effects through activation of the p44/42 mitogen-activated protein kinase signaling pathway. This is the first discovery which links neurotrophic activity with CCN signaling.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Connective Tissue Growth Factor/biosynthesis , Induced Pluripotent Stem Cells/drug effects , Sesquiterpenes/pharmacology , Cells, Cultured , Connective Tissue Growth Factor/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Sesquiterpenes/chemical synthesis , Sesquiterpenes/chemistry
13.
Biochem Biophys Res Commun ; 504(4): 635-640, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30205953

ABSTRACT

Acetylation of histones and other proteins plays crucial roles in transcriptional regulation, chromatin organization, and other biological processes. It has been recently reported that the nucleoprotein (NP) of influenza virus is acetylated in infected cells, and this modification contributes to the RNA polymerization activity of the virus. As the influenza virus, the Ebolavirus contains single-stranded negative-sense RNA as its viral genome, which interacts with NP and other viral proteins. In this study, we performed a series of biochemical experiments and revealed that the recombinant Ebolavirus NP and the viral matrix protein VP40, which binds with NP, were acetylated by eukaryotic histone acetyltransferases, such as P300/CREB-binding protein (P300/CBP) and P300/CBP-associated factor (PCAF), in vitro. Mass spectrometry was used to identify the lysine residues that were potential acetylation targets in NP and VP40. The identified lysine residues in NP were located in the RNA-binding cleft and the VP35-binding domain. Potentially acetylated lysine targets in VP40 were identified in the basic patch, which is necessary for constructing oligomers. These results suggest that the acetylation of these lysine residues is involved in the interactions between viral proteins.


Subject(s)
Ebolavirus/metabolism , Lysine/metabolism , Nucleoproteins/metabolism , Viral Matrix Proteins/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Ebolavirus/genetics , Humans , Mass Spectrometry , Nucleoproteins/genetics , Protein Processing, Post-Translational , Recombinant Proteins/metabolism , Viral Matrix Proteins/genetics
14.
PLoS One ; 13(7): e0201239, 2018.
Article in English | MEDLINE | ID: mdl-30048506

ABSTRACT

The crosstalk between cells is important for differentiation of cells. Murine-derived feeder cells, SNL76/7 feeder cells (SNLs) or mouse primary embryonic fibroblast feeder cells (MEFs) are widely used for culturing undifferentiated human induced pluripotent stem cells (hiPSCs). It is still unclear whether different culture conditions affect the induction efficiency of definitive endoderm (DE) differentiation from hiPSCs. Here we show that the efficiency of DE differentiation from hiPSCs cultured on MEFs was higher than that of hiPSCs cultured on SNLs. The qPCR, immunofluorescent and flow cytometry analyses revealed that the expression levels of mRNA and/or proteins of the DE marker genes, SOX17, FOXA2 and CXCR4, in DE cells differentiated from hiPSCs cultured on MEFs were significantly higher than those cultured on SNLs. Comprehensive RNA sequencing and molecular network analyses showed the alteration of the gene expression and the signal transduction of hiPSCs cultured on SNLs and MEFs. Interestingly, the expression of non-coding hXIST exon 4 was up-regulated in hiPSCs cultured on MEFs, in comparison to that in hiPSCs cultured on SNLs. By qPCR analysis, the mRNA expression of undifferentiated stem cell markers KLF4, KLF5, OCT3/4, SOX2, NANOG, UTF1, and GRB7 were lower, while that of hXIST exon 4, LEFTY1, and LEFTY2 was higher in hiPSCs cultured on MEFs than in those cultured on SNLs. Taken together, our finding indicated that differences in murine-feeder cells used for maintenance of the undifferentiated state alter the expression of pluripotency-related genes in hiPSCs by the signaling pathways and affect DE differentiation from hiPSCs, suggesting that the feeder cells can potentiate hiPSCs for DE differentiation.


Subject(s)
Coculture Techniques/methods , Endoderm/cytology , Feeder Cells/cytology , Fibroblasts/cytology , Induced Pluripotent Stem Cells/cytology , Animals , Cell Differentiation , Cell Line , Endoderm/metabolism , Feeder Cells/metabolism , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Mice , Signal Transduction , Transcriptome
15.
Molecules ; 23(6)2018 May 29.
Article in English | MEDLINE | ID: mdl-29844252

ABSTRACT

BACKGROUND: In the search for novel antidepressive drug candidates, bioguided fractionation of nonpolar constituents present in the oleoresin from ginger rhizomes (Zingiber officinale Roscoe, Zingiberaceae) was performed. This particular direction of the research was chosen due to the existing reports on the antidepressive properties of ginger total extract. The search for individual metabolites acting as MAO-A inhibitors, which correspond to the apparent effect of the total extract, is the subject of this work. METHODS: Hexane extracts from ginger rhizomes were fractionated by using column chromatography (including silica gel impregnated with silver nitrate) and semi-preparative high-performance chromatography. For the activity assessment, an in vitro monoamine oxidase A (MAO-A) inhibition luminescence assay was performed on 10 purified terpenes: 1,8-cineole, α-citronellal, geraniol, ß-sesquiphellandrene, γ-terpinen, geranyl acetate, isobornyl acetate, terpinen-4-ol, (E,E)-α-farnesene, and α-zingiberene. RESULTS: Geraniol and (-)-terpinen-4-ol were found to be the strongest enzyme inhibitors with inhibition of 44.1% and 42.5%, respectively, at a concentration of 125 µg/mL. No differences in the inhibition potential were observed for the different groups of terpenes: sesquiterpenes, monoterpenes, or sesquiterpene alcohols; however, the two most active compounds contained a hydroxyl moiety. CONCLUSIONS: Terpene constituents from ginger's extract were found to exhibit moderate inhibitory properties against the MAO-A enzyme in in vitro tests.


Subject(s)
Antidepressive Agents/chemistry , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase/chemistry , Terpenes/chemistry , Zingiber officinale/chemistry , Acyclic Monoterpenes , Antidepressive Agents/isolation & purification , Enzyme Assays , Hexanes/chemistry , Humans , Liquid-Liquid Extraction/methods , Monoamine Oxidase Inhibitors/isolation & purification , Rhizome/chemistry , Solvents/chemistry , Terpenes/classification , Terpenes/isolation & purification
16.
J Biol Chem ; 293(19): 7126-7138, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29555684

ABSTRACT

Histone acetylation plays crucial roles in transcriptional regulation and chromatin organization. Viral RNA of the influenza virus interacts with its nucleoprotein (NP), whose function corresponds to that of eukaryotic histones. NP regulates viral replication and has been shown to undergo acetylation by the cAMP-response element (CRE)-binding protein (CBP) from the host. However, whether NP is the target of other host acetyltransferases is unknown. Here, we show that influenza virus NP undergoes acetylation by the two host acetyltransferases GCN5 and P300/CBP-associated factor (PCAF) and that this modification affects viral polymerase activities. Western blot analysis with anti-acetyl-lysine antibody on cultured A549 human lung adenocarcinoma epithelial cells infected with different influenza virus strains indicated acetylation of the viral NP. A series of biochemical analyses disclosed that the host lysine acetyltransferases GCN5 and PCAF acetylate NP in vitro MS experiments identified three lysine residues as acetylation targets in the host cells and suggested that Lys-31 and Lys-90 are acetylated by PCAF and GCN5, respectively. RNAi-mediated silencing of GCN5 and PCAF did not change acetylation levels of NP. However, interestingly, viral polymerase activities were increased by the PCAF silencing and were decreased by the GCN5 silencing, suggesting that acetylation of the Lys-31 and Lys-90 residues has opposing effects on viral replication. Our findings suggest that epigenetic control of NP via acetylation by host acetyltransferases contributes to regulation of polymerase activity in the influenza A virus.


Subject(s)
Histone Acetyltransferases/metabolism , Influenza A virus/metabolism , RNA-Binding Proteins/metabolism , Viral Core Proteins/metabolism , p300-CBP Transcription Factors/metabolism , A549 Cells , Acetylation , Amino Acid Sequence , Blotting, Western , Chromatography, Liquid , Epigenesis, Genetic , Epithelial Cells/virology , Histone Acetyltransferases/genetics , Humans , Influenza A virus/enzymology , Influenza A virus/genetics , Influenza A virus/physiology , Lysine/metabolism , Nucleocapsid Proteins , Protein Processing, Post-Translational , RNA Interference , RNA, Viral/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Tandem Mass Spectrometry , Transcription, Genetic , Viral Core Proteins/chemistry , Viral Core Proteins/genetics , Virus Replication , p300-CBP Transcription Factors/genetics
17.
Biochem Biophys Rep ; 12: 129-134, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29090273

ABSTRACT

The influenza A virus, which has an RNA genome, requires RNA-dependent RNA polymerase for transcription and replication. The polymerase is comprised of the subunits PA, PB1, and PB2. The C-terminal RNA-binding domain in PB2 contains lysine 627 (PB2 627), which is associated with pathogenicity and host range. However, the structure and molecular mechanism of PB2 627 in solution remain obscure. Here, we investigated PB2 627 in solution by nuclear magnetic resonance (NMR) and detected inhomogeneity in the intensities of backbone amide proton signals due to local fluctuations in structure. To characterize the effects of chemical chaperones on spectral data and improve the data quality, we tested 20 different additives, including L-arginine L-glutamate salt, (L-arginine)2SO4, glycerol, ß-octylglucoside, 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate, Na2SO4, 1,5-diaminopentane, 1,4-diaminobutane, trehalose, sucrose, glycine, trimethylamine N-oxide, ß-alanine, L-α-alanine, hydroxyectoine, betaine, L-proline, and non-detergent sulfobetaine 195, 201, and 256. We evaluated the quality of the resulting spectra by calculating the standard deviation and average of the ratio of signal intensities to noise level of amide peaks, as well as the ratio of the standard deviation to the average. NMR-profile analysis revealed diverse effects of additives on the dynamic properties of PB2 627. Based on such criteria, we found that small osmolytes such as glycine and L-α-alanine reduced structural fluctuations and improved the quality of spectral data, which is likely to facilitate a detailed NMR-based structural analysis. The methodology developed here may also be more generally useful for evaluating the effects of chemical chaperones on the structural integrity of proteins.

18.
BMC Complement Altern Med ; 17(1): 96, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28173854

ABSTRACT

BACKGROUND: To contribute to the development of novel anti-influenza drugs, we investigated the anti-influenza activity of crude extracts from 118 medicinal plants collected in Myanmar. We discovered that extract from the stems of Jatropha multifida Linn. showed anti-influenza activity. J. multifida has been used in traditional medicine for the treatment of various diseases, and the stem has been reported to possess antimicrobial, antimalarial, and antitumor activities. However, the anti-influenza activity of this extract has not yet been investigated. METHODS: We prepared water (H2O), ethyl acetate (EtOAc), n-hexane (Hex), and chloroform (CHCl3) extracts from the stems of J. multifida collected in Myanmar, and examined the survival of Madin-Darby canine kidney (MDCK) cells infected with the influenza A (H1N1) virus, and the inhibitory effects of these crude extracts on influenza A viral infection and growth in MDCK cells. RESULTS: The H2O extracts from the stems of J. multifida promoted the survival of MDCK cells infected with the influenza A H1N1 virus. The EtOAc and CHCl3 extracts resulted in similar, but weaker, effects. The H2O, EtOAc, and CHCl3 extracts from the stems of J. multifida inhibited influenza A virus H1N1 infection; the H2O extract possessed the strongest inhibitory effect on influenza infection in MDCK cells. The EtOAc, Hex, and CHCl3 extracts all inhibited the growth of influenza A H1N1 virus, and the CHCl3 extract demonstrated the strongest activity in MDCK cells. CONCLUSION: The H2O or CHCl3 extracts from the stems of J. multifida collected in Myanmar demonstrated the strongest inhibition of influenza A H1N1 viral infection or growth in MDCK cells, respectively. These results indicated that the stems of J. multifida could be regarded as an anti-influenza herbal medicine as well as a potential crude drug source for the development of anti-influenza compounds.


Subject(s)
Antiviral Agents/therapeutic use , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/drug therapy , Phytotherapy , Plant Extracts/therapeutic use , Animals , Antiviral Agents/pharmacology , Cell Line , Dogs , Humans , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Medicine, Traditional , Myanmar , Plant Extracts/pharmacology , Plant Stems
19.
Drug Discov Ther ; 10(2): 109-13, 2016.
Article in English | MEDLINE | ID: mdl-26902927

ABSTRACT

To find a novel influenza inhibitor targeting the endonuclease activity of influenza A virus polymerase acidic protein (PA), which is essential for the acquisition of primers for viral mRNA transcription, seven Kampo extracts were tested in vitro for their ability to inhibit endonuclease activity of the recombinant PA protein that was expressed and purified from Escherichia coli. The Kampo medicines Kakkonto, Shosaikoto, Saikokeishito, Keishito, Maobushisaishinto, and Maoto, but not Chikujountanto, inhibited PA endonuclease activity in a dose-dependent manner. Our results indicate that Kampo medicines are good sources providing a structural lead for optimization of an influenza endonuclease inhibitor.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Enzyme Inhibitors/pharmacology , Medicine, Kampo , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Dose-Response Relationship, Drug , Escherichia coli/metabolism , Influenza A virus/enzymology , Plasmids/genetics , RNA, Messenger/drug effects , RNA-Dependent RNA Polymerase/genetics , Recombinant Proteins/chemistry , Viral Proteins/genetics
20.
Biochem Biophys Res Commun ; 470(4): 798-803, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26809091

ABSTRACT

Although jiadifenolide has been reported to neurotrophin-like activity in primary cultured rat cortical neurons, it is unknown on that of activity in human neurons. Thus, we aimed to assess neurotrophin-like activity by jiadifenolide in human neuronal cells. We analyzed neuronal precursor cells derived from human induced pluripotent stem cells for microtuble-associated-protein-2 expression by immunofluorescence and western blot, following jiadifenolide treatment. Jiadifenolide promoted dendrite outgrowth, facilitated growth, and prevented death in neuronal cells derived from human induced pluripotent stem cells. Interestingly, jiadifenolide also increased postsynaptic density-95 protein expression suggesting that jiadifenolide promotes neuronal maturation and post-synaptic formation. We demonstrate for the first time that jiadifenolide exhibits neurotrophic effects on human neuronal precursor cells.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Nerve Growth Factors/administration & dosage , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neurogenesis/physiology , Sesquiterpenes/administration & dosage , Cell Differentiation , Cell Enlargement/drug effects , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , Neural Stem Cells/drug effects , Neurogenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...