Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 4: 97, 2013.
Article in English | MEDLINE | ID: mdl-23630521

ABSTRACT

Successful adaptation/acclimatization to low temperatures in micro-algae is usually connected with production of specific biotechnologically important compounds. In this study, we evaluated the growth characteristics in a micro-scale mass cultivation of the Antarctic soil green alga Chlorella mirabilis under different nitrogen and carbon sources followed by analyses of fatty acid contents. The micro-scale mass cultivation was performed in stable (in-door) and variable (out-door) conditions during winter and/or early spring in the Czech Republic. In the in-door cultivation, the treatments for nitrogen and carbon sources determination included pure Z medium (control, Z), Z medium + 5% glycerol (ZG), Z medium + 5% glycerol + 50 µM KNO3 (ZGN), Z medium + 5% glycerol + 200 µM NH4Cl (ZGA), Z medium + 5% glycerol + 1 mM Na2CO3 (ZNC), Z medium + 5% glycerol + 1 mM Na2CO3 + 200 µM NH4Cl (ZGCA) and Z medium + 5% glycerol + 1 mM Na2CO3 + 50 µM KNO3 (ZGCN) and were performed at 15°C with an irradiance of 75 µmol m(-2) s(-1). During the out-door experiments, the night-day temperature ranged from -6.6 to 17.5°C (daily average 3.1 ± 5.3°C) and irradiance ranged from 0 to 2,300 µmol m(-2) s(-1) (daily average 1,500 ± 1,090 µmol m(-2) s(-1)). Only the Z, ZG, ZGN, and ZGC treatments were used in the out-door cultivation. In the in-door mass cultivation, all nitrogen and carbon sources additions increased the growth rate with the exception of ZGA. When individual sources were considered, only the effect of 5% glycerol addition was significant. On the other hand, the growth rate decreased in the ZG and ZGN treatments in the out-door experiment, probably due to carbon limitation. Fatty acid composition showed increased production of linoleic acid in the glycerol treatments. The studied strain of C. mirabilis is proposed to be a promising source of linoleic acid in low-temperature-mass cultivation biotechnology. This strain is a perspective model organism for biotechnology in low-temperature conditions.

2.
Folia Microbiol (Praha) ; 51(4): 349-56, 2006.
Article in English | MEDLINE | ID: mdl-17007441

ABSTRACT

Two zooid forming strains and four non-zooid strains of the green chlorococcal alga Scenedesmus obliquus were compared in terms of growth, morphological and physiological characteristics. Large differences were observed among the strains grown under various growth conditions (light and temperature). The assumption that the zooid forming strains may be similar was not confirmed. Since they considerably differed in daughter cells morphology, photosynthesis, growth rate in batch culture or commitment to cellular division. Molecular-genetic comparison of 18S RNA/DNA might distinguish zooid forming strains from non-zooid ones.


Subject(s)
Cell Cycle/physiology , Scenedesmus , Spores/physiology , Cell Movement/physiology , Chlorophyll/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Light , Photosynthesis/physiology , Scenedesmus/classification , Scenedesmus/cytology , Scenedesmus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...