Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2352: 253-259, 2021.
Article in English | MEDLINE | ID: mdl-34324192

ABSTRACT

Adult human cortical organotypic slice culture is an attractive model system to explore mechanisms of human brain pathology as well as to test drug candidates for treatment of neurodegeneration. Acute studies in human brain slices are limited by the lifetime of the tissue and focus mainly on hippocampus slice preparation. Here we describe the derivation of human organotypic slice cultures of cortical origin, which can be kept in culture for up to 6 weeks. This method enabled us to test the system in coculture with reprogrammed neurons and show its feasibility in neuronal cell integration experiments in human-to-human grafting situation.


Subject(s)
Cellular Reprogramming Techniques , Cellular Reprogramming , Cerebral Cortex/cytology , Coculture Techniques , Neurons/cytology , Neurons/metabolism , Organ Culture Techniques , Cell Culture Techniques , Humans
2.
Stem Cells Transl Med ; 9(11): 1365-1377, 2020 11.
Article in English | MEDLINE | ID: mdl-32602201

ABSTRACT

Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long-term neuroepithelial-like stem (lt-NES) cell-derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke-injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell-derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt-NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer-specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno-electron microscopy, rabies virus retrograde monosynaptic tracing, and whole-cell patch-clamp recordings. Our findings provide the first evidence that pluripotent stem cell-derived neurons can integrate into adult host neural networks also in a human-to-human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain.


Subject(s)
Induced Pluripotent Stem Cells/transplantation , Neurons/metabolism , Animals , Cell Differentiation , Humans , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...