Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10670, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724587

ABSTRACT

In this study, we introduce a method for replacing the glass used in existing display electronic materials, lighting, and solar cells by synthesizing a colorless and transparent polyimide (CPI) film with excellent mechanical properties and thermal stability using a combination of new monomers. Poly(amic acid) (PAA) was synthesized using dianhydride 4,4'-biphthalic anhydride (BPA) and diamine 2,2-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (AHP). Various contents of organically modified montmorillonite (MMT) and mica were dispersed in PAA solution through solution intercalation, and then CPI hybrid films were prepared through multi-step thermal imidization. The organoclays synthesized to prepare CPI hybrid films were Cloisite 93A (CS-MMT) and hexadimethrine-mica (HM-Mica) based on MMT and mica, respectively. In particular, the diamine monomer AHP containing a -OH group was selected to increase the dispersibility and compatibility between the hydrophilic clays and the CPI matrix. To demonstrate the characteristics of CPI, the overall polymer structure was bent and a strong electron withdrawing -CF3 group was used as a substituent. The thermomechanical properties, morphology of clay dispersion, and optical transparency of the CPI hybrid films were investigated and compared according to the type and content of organoclays. Two types of organoclays, CS-MMT and HM-Mica, were dispersed in a CPI matrix at 1 to 7 wt%, respectively. In electron microscopy, most of the clays were uniformly dispersed in a plate-like shape of less than 20 nm at a certain critical content of the two types of organoclays, but agglomeration of the clays was observed when the content was higher than the critical content. Hybrids using HM-Mica had better thermomechanical properties and hybrids containing CS-MMT had better optical transparency.

2.
ACS Omega ; 9(10): 12195-12203, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38497003

ABSTRACT

Six poly(amic acid)s (PAAs) were synthesized by reacting bis(3-aminophenyl) sulfone with various dianhydride monomers such as pyromellitic dianhydride, 4,4'-biphthalic anhydride, dicyclohexyl-3,4,3',4'-tetracarboxylic dianhydride, 4,4'-oxidiphthalic anhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride. These PAAs were then converted to polyimide (PI) films by thermal imidization at various temperatures. To obtain colorless and transparent PI (CPI), the dianhydride monomer used in this study had an overall bent structure, a structure containing a strong electron-withdrawing -CF3 substituent or an alicyclic ring. In addition, some monomers contained ether or ketone functional groups in their bent structures. The thermomechanical properties, optical transparency, and solubility of CPI films with six different dianhydride monomer structures were investigated, and the correlation between the monomer structure and CPI film properties was clarified. Overall, CPI with an aromatic main chain structure or a linear structure had excellent thermal and mechanical properties. In contrast, CPI with a bent structure containing functional groups or substituents in the main chain exhibited excellent optical transparency and solubility.

3.
RSC Adv ; 14(13): 9062-9071, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38500626

ABSTRACT

Copoly(amic acid) was prepared using the diamine monomer N,N'-[2,2'-bis(trifluoromethyl)-4,4'-biphenylene]bis(4-aminobenzamide) (TFAB) and the anhydride monomers 4,4'-(hexafluoro-isopropylidene)diphthalic anhydride (6FDA) and 4,4'-biphthalic anhydride (BPA). Thereafter, a colorless and transparent copoly(amide imide) (Co-CPAI) film was synthesized through various heat treatments. Co-CPAI hybrid films with a TFAB : 6FDA : BPA molar ratio of 1 : 0.5 : 0.5 were subsequently fabricated using organically modified hectorite (STN) with various contents ranging from 0 to 7 wt% via the solution intercalation method. Finally, the thermomechanical properties, clay dispersion, and optical transmittance of the hybrid films were investigated. The results of wide-angle X-ray diffractometry and transmission electron microscopy demonstrated good dispersion at low clay loadings; however, clay agglomeration was observed above a certain critical STN content. At the critical STN content of 3 wt%, the clay was evenly distributed in the matrix with a nanoscale thickness of approximately 10 nm. Hybrid films containing 3 wt% STN showed excellent thermomechanical properties. Beyond this critical clay content, the physical properties of the films decreased because of the agglomeration of excess clay. Regardless of the clay content, however, the optical properties of the hybrid films remained constant, and their yellow indices, which ranged from 2 to 4, indicated excellent colorless transparency.

5.
Nanomaterials (Basel) ; 14(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38392722

ABSTRACT

This study developed an advanced 850 nm centered distributed Bragg reflector (DBR) (broadband DBR) composed of nanomaterial-based multiple structures to improve the optical efficiency of an 850 nm near-infrared light-emitting diode (NIR-LED). A combined 850 nm centered broadband DBR was fabricated by growing an 800 nm centered ten-pair DBR on a 900 nm centered ten-pair DBR (denoted as a combined DBR). The combined DBR exhibited a slightly wider peak band than conventional DBRs. Furthermore, the peak band width of the combined DBR significantly increased upon using a reflective AlAs buffer layer that reduced the overlapped reflection. The output power (20.5 mW) of NIR-LED chips using the combined DBR with an AlAs buffer layer exceeded that of a conventional 850 nm centered DBR (14.5 mW) by more than 40%. Results indicated that combining the optical conditions of wavelengths and the AlAs buffer layer effectively strengthened the broadband effect of the DBR and increased the optical efficiency of the 850 nm NIR-LED.

6.
Sci Rep ; 14(1): 655, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182758

ABSTRACT

Poly(amic acid) (PAA) was synthesized using dianhydride 4,4'-oxydiphthalic anhydride and diamine 3,3'-dihydroxybenzidine, and polyimide (PI) hybrid films were synthesized by dispersing organo-mica in PAA through a solution intercalation method. Hexadimethrine-mica (HM-Mica), 1,2-dimethylhexadecylimidazolium-mica (MI-Mica), and didodecyldiphenylammonium-mica (DP-Mica), which were obtained via the organic modification of pristine mica, were used as the organo-micas for the PI hybrid films. The organo-mica content was varied from 0.5 to 3.0 wt% with respect to the PI matrix. The thermomechanical properties, morphology, and optical transparency of the resultant PI hybrid films were measured and compared. Dispersion of even small amounts of organo-mica effectively improved the physical properties of the PI hybrids, and maximum enhancements in physical properties were observed at a specific critical content. Electron microscopy of the hybrid films revealed that the organo-mica uniformly dispersed throughout the polymer matrix at the nanoscale level when added at low contents but aggregated in the matrix when added at levels above the critical content. Structural changes in the organo-mica closely influenced the changes in the physical properties of the hybrid films. All PI hybrid films with various organo-mica contents showed similar optical properties, but that prepared with MI-Mica demonstrated the best thermomechanical properties. All synthesized PI hybrid films were transparent regardless of the type and content of organo-mica used.

7.
Molecules ; 28(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067551

ABSTRACT

Waste wood, which has a large amount of cellulose fibers, should be transformed into useful materials for addressing environmental and resource problems. Thus, this study analyzed the application of waste wood as supercapacitor electrode material. First, cellulose fibers were extracted from waste wood and mixed with different contents of graphene nanoplatelets (GnPs) in water. Using a facile filtration method, cellulose papers with GnPs were prepared and converted into carbon papers through carbonization and then to porous activated carbon papers containing GnPs (ACP-GnP) through chemical activation processes. For the morphology of ACP-GnP, activated carbon fibers with abundant pores were formed. The increase in the amount of GnPs attached to the fiber surfaces decreased the number of pores. The Brunauer-Emmett-Teller surface areas and specific capacitance of the ACP-GnP electrodes decreased with an increase in the GnP content. However, the galvanostatic charge-discharge curves of ACPs with higher GnP contents gradually changed into triangular and linear shapes, which are associated with the capacitive performance. For example, ACP with 15 wt% GnP had a low mass transfer resistance and high charge delivery of ions, resulting in the specific capacitance value of 267 Fg-1 owing to micropore and mesopore formation during the activation of carbon paper.

8.
Micromachines (Basel) ; 14(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37630122

ABSTRACT

This study investigated a reflective transparent structure to improve the optical efficiency of 850 nm infrared light-emitting diodes (IR-LEDs), by effectively enhancing the number of extracted photons emitted from the active region. The reflective transparent structure was fabricated by combining transparent epitaxial and reflective bonding structures. The transparent epitaxial structure was grown by the liquid-phase epitaxy method, which efficiently extracted photons emitted from the active area in IR-LEDs, both in the vertical and horizontal directions. Furthermore, a reflective bonding structure was fabricated using an omnidirectional reflector and a eutectic metal, which efficiently reflected the photons emitted downwards from the active area in an upward direction. To evaluate reflective transparent IR-LED efficiency, a conventional absorbing substrate infrared light-emitting diode (AS IR-LED) and a transparent substrate infrared light-emitting diode (TS IR-LED) were fabricated, and their characteristics were analyzed. Based on the power-current (L-I) evaluation results, the output power (212 mW) of the 850 nm IR-LED with the reflective transparent structure increased by 76% and 26%, relative to those of the AS IR-LED (121 mW) and TS IR-LED (169 mW), respectively. Furthermore, the reflective transparent structure possesses both transparent and reflective properties, as confirmed by photometric and radial theta measurements. Therefore, light photons emitted from the active area of the 850 nm IR-LED were efficiently extracted upward and sideways, because of the reflective transparent structure.

9.
RSC Adv ; 13(35): 24423-24431, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37583674

ABSTRACT

Polyamic acid (PAA) was synthesized using the diamine monomer N,N'-[2,2'-bis(trifluoromethyl)-4,4'-biphenylene]bis(4-aminobenzamide) and dianhydride monomer 4,4'-oxydiphthalic anhydride. Colorless and transparent poly(amide imide) (CPAI) hybrid films were prepared via multi-step thermal imidization of PAA in which various contents of nano-filler were dispersed. The CPAI hybrid films were prepared by dispersing organoclay STN, which was obtained by organically modifying hectorite, in CPAI by solution intercalation with various contents ranging from 1 to 7 wt%. The thermomechanical properties, morphologies, and optical transparencies of the obtained CPAI hybrid films were investigated based on the dispersed STN content, and the results were compared. Some of the clay in the CPAI hybrid film were agglomerated, which was observed using a transmission electron microscope; however, most clays were well-dispersed, with a nano-size of less than 10 nm. The best thermomechanical properties of the CPAI hybrid film were exhibited with an STN content of 3 wt%, but these properties decreased above the critical content. The coefficients of thermal expansion of all the hybrid films were below 20 ppm per °C regardless of the amount of STN, and the yellow index was 1-2 even when the STN content increased to 7 wt%.

10.
RSC Adv ; 13(24): 16285-16292, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37266490

ABSTRACT

Although aromatic polyimide (PI) exhibits excellent mechanical performance and thermal stability, its dark color limits applicability in optical displays. Therefore, it is desirable to manufacture colorless, transparent PI (CPI) nanocomposite films that retain excellent physical properties. In this study, a solution intercalation method was used to disperse organoclay (Cloisite 25A; CS25A) in poly(amic acid), which was prepared using 4,4'-oxydiphthalic dianhydride and 3,4'-oxydianiline as monomers. This dispersion was then subjected to thermal imidization to synthesize CPI hybrid films. The influence of the CS25A content (0-1.00 wt%) on the thermomechanical properties, optical transmittance, and morphology of the prepared films was investigated. The hybrid film with a CS25A content of 0.50 wt% exhibited the best thermomechanical properties. However, upon further increasing the organoclay content to 1.00 wt%, the physical properties deteriorated. At 0.50 wt% CS25A, some agglomeration occurred but most of the clay was well dispersed as nano-sized particles, as revealed by transmission electron microscopy. In contrast, when the CS25A content exceeded a critical content, most of the clay was agglomerated and the physical properties were reduced. All the obtained CPI hybrid films were colorless and transparent, regardless of the organoclay content.

11.
ACS Omega ; 8(18): 16174-16185, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37179633

ABSTRACT

The production of effective visible-light (VL) photocatalysts for the elimination of noxious organic pollutants from wastewater has attracted considerable interest owing to increasing awareness worldwide. Despite the large number of photocatalysts reported, the selectivity and activity of photocatalysts still need to be developed. The goal of this research is to eliminate toxic methylene blue (MB) dye from wastewater through a cost-effective photocatalytic process using VL illumination. A novel N-doped ZnO/carbon nanotube (NZO/CNT) nanocomposite was successfully synthesized via a facile cocrystallization method. The structural, morphological, and optical properties of the synthesized nanocomposite were systematically investigated. The as-prepared NZO/CNT composite exhibited remarkable photocatalytic performance (96.58%) within 25 min of VL irradiation. The activity was 92, 52, and 27% greater than that of photolysis, ZnO, and NZO, respectively, under identical conditions. The enhanced photocatalytic efficiency of NZO/CNT was attributed to the N atom and CNT involvement: N contributes to narrowing the band gap of ZnO, and CNT captures the electrons and maintains the electron flow in the system. The reaction kinetics of MB degradation, catalyst reusability, and stability were also investigated. In addition, the photodegradation products and their toxicity effects in our environment were analyzed using the liquid chromatography-mass spectrometry and ecological structure activity relationships programs, respectively. The findings of the current study demonstrate that the NZO/CNT nanocomposite can be utilized to remove contaminants in an environmentally acceptable manner, thereby providing a new window for practical applications.

12.
Front Neurol ; 14: 1163904, 2023.
Article in English | MEDLINE | ID: mdl-37251228

ABSTRACT

Introduction: Sleep is an indispensable component of human life. However, in modern times, the number of people suffering from sleep disorders, such as insomnia and sleep deprivation, has increased significantly. Therefore, to alleviate the discomfort to the patient due to lack of sleep, sleeping pills and various sleep aids are being introduced and used. However, sleeping drugs are prescribed only to a limited extent due to the side effects posed by them and resistance to such drugs developed by patients in the long term, and the majority of sleep aids are scientifically groundless products. This study aimed to develop a device that induced sleep by spraying a mixed gas of carbon dioxide and air to create an environment that could induce sleep, similar to the inside of a sealed vehicle, to control oxygen saturation in the body. Methods: Based on the stipulated safety standards and the human tidal volume, the target concentration of carbon dioxide was determined to be of three types: 15,000, 20,000, and 25,000 ppm. After analyzing diverse structures for safely mixing gases, the most appropriate shape, the reserve tank, was selected as the best suited structure. Various variables, such as spraying angle and distance, flow rate, atmospheric temperature, and nozzle length, were comprehensively measured and tested. Furthermore based on this aspect, diffusion simulation of carbon dioxide concentration and actual experiments were conducted. To secure the stability and reliability of the developed product, an accredited test was performed to investigate the error rate of carbon dioxide concentration. Furthermore, clinical trials comprising polysomnography and questionnaires confirmed the effectiveness of the developed product not only in reducing sleep latency but also in enhancing the overall sleep quality. Results: When the developed device was put to use in reality, sleep latency was decreased by 29.01%, on average, for those with a sleep latency of 5 min or more, compared to when the device was not in use. Moreover, the total sleep time was increased by 29.19 min, WASO was decreased by 13.17%, and sleep efficiency was increased by 5.48%. We also affirmed that the ODI and 90% ODI did not decrease when the device was used. Although different questions may be raised about the safety of using a gas such as carbon dioxide (CO2), the result that tODI was not reduced shows that sleep aids using CO2 mixtures do not adversely affect human health. Discussion: The results of this study suggest a new method that can be used to treat sleep disorders including insomnia.

13.
Micromachines (Basel) ; 14(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37241676

ABSTRACT

The Al/Au alloy was investigated to improve the ohmic characteristic and light efficiency of reflective infrared light-emitting diodes (IR-LEDs). The Al/Au alloy, which was fabricated by combining 10% aluminum and 90% gold, led to considerably improved conductivity on the top layer of p-AlGaAs of the reflective IR-LEDs. In the wafer bond process required for fabricating the reflective IR-LED, the Al/Au alloy, which has filled the hole patterns in Si3N4 film, was used for improving the reflectivity of the Ag reflector and was bonded directly to the top layer of p-AlGaAs on the epitaxial wafer. Based on current-voltage measurements, it was found that the Al/Au alloyed material has a distinct ohmic characteristic pertaining to the p-AlGaAs layer compared with those of the Au/Be alloy material. Therefore, the Al/Au alloy may constitute one of the favored approaches for overcoming the insulative reflective structures of reflective IR-LEDs. For a current density of 200 mA, a lower forward voltage (1.56 V) was observed from the wafer bond IR-LED chip made with the Al/Au alloy; this voltage was remarkably lower in value than that of the conventional chip made with the Au/Be metal (2.29 V). A higher output power (182 mW) was observed from the reflective IR-LEDs made with the Al/Au alloy, thus displaying an increase of 64% compared with those made with the Au/Be alloy (111 mW).

14.
Polymers (Basel) ; 15(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36850146

ABSTRACT

As environmental pollution becomes a serious concern, considerable effort has been undertaken to develop power devices with minimal production of carbon dioxide (CO2) and exhaust gases. Owing to this effort, interest in technologies related to hybrid and electric products that use fuel cells has been increasing. The risk of human injuries owing to electromagnetic waves generated by electrical and electronic devices has been also rising, prompting the development of mitigating technologies. In addition, antistatic devices for protecting operators from static electricity have also been considered. Therefore, in this study, we investigated the development of thermoplastic carbon composites containing carbon fibers (CFs) and carbon nanotubes (CNTs). Ultimately, materials with improved mechanical properties (e.g., flexural, impact, and tensile strength properties of about +61.09%, +21.44%, +63.56%, respectively), electromagnetic interference (EMI) shielding (+70.73 dB), and surface resistivity (nearly zero) can be developed by impregnating CFs and CNTs with polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) resins, respectively. The total average mechanical properties of PC and ABS composites increased by 24.35% compared with that of ABS composites, while that of PC composites increased by 32.86% with that of PC and ABS composites. Therefore, in this study, we aimed to develop carbon composites, to take advantage of these thermoplastic resins.

15.
Molecules ; 27(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080158

ABSTRACT

Lyocell is a biodegradable filament yarn obtained by directly dissolving cellulose in a mixture of N-methylmorpholine-N-oxide and a non-toxic solvent. Therefore, herein, lyocell fabrics were employed as eco-friendly carbon-precursor substitutes for use as electromagnetic interference (EMI) shielding materials. First, a lyocell fabric treated with polyacrylamide via electron beam irradiation reported in a previous study to increase carbon yields and tensile strengths was carbonized by heating to 900, 1100, and 1300 °C. The carbonization transformed the fabric into a graphitic crystalline structure, and its electrical conductivity and EMI shielding effectiveness (SE) were enhanced despite the absence of metals. For a single sheet, the electrical conductivities of the lyocell-based carbon fabric samples at the different carbonization temperatures were 3.57, 5.96, and 8.91 S m-1, leading to an EMI SE of approximately 18, 35, and 82 dB at 1.5-3.0 GHz, respectively. For three sheets of fabric carbonized at 1300 °C, the electrical conductivity was 10.80 S m-1, resulting in an excellent EMI SE of approximately 105 dB. Generally, EM radiation is reduced by 99.9999% in instances when the EMI SE was over 60 dB. The EMI SE of the three lyocell-based carbon fabric sheets obtained at 1100 °C and that of all the sheets of the sample obtained at 1300 °C exceeded approximately 60 dB.


Subject(s)
Graphite , Nanotubes, Carbon , Electromagnetic Phenomena , Nanotubes, Carbon/chemistry , Temperature , Textiles
16.
Sci Rep ; 12(1): 13100, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35908090

ABSTRACT

A series of thermotropic liquid crystal copolyesters (Co-TLCPs) was prepared by melt polymerization using 2,5-diethoxyterephthalic acid (DTA), 2,7-dihydroxynaphthalene (DHN), and p-hydroxybenzoic acid (HBA) monomers, where the HBA content was varied (0-5 mol). At 3 mol HBA, the Co-TLCPs formed nematic mesophases, while below this concentration, the liquid crystalline phase did not appear. The Co-TLCP sample with 3 mol HBA was subjected to melt spinning and heat-treated under various conditions (temperature and time) to investigate their effect on the thermo-mechanical properties and degree of crystallinity. The objective was to determine the critical heat treatment condition that can maximize the properties of the spun Co-TLCP fibers. The microstructure of the heat-treated fiber was investigated using scanning electron microscopy, and the optimal annealing conditions were confirmed based on the morphology of the fiber, which exhibited a skin-core structure owing to the varying heat and pressure conditions applied during spinning.

17.
Polymers (Basel) ; 14(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35746045

ABSTRACT

Poly(amic acid) (PAA) was synthesized from dianhydride 4,4-(4,4-isopropylidenediphenoxy)bis(phthalic anhydride) and diamine bis [4-(3-aminophenoxy) phenyl] sulfone. Colorless and transparent polyimide (CPI) hybrid films were synthesized through thermal imidization after dispersing nanofillers using an intercalation method in a PAA solution. C16-GS and C16-MMT, in which hexadecylamine (C16) was substituted on graphene sheet (GS) and montmorillonite (MMT), respectively, were used as nanofillers to reinforce the CPI hybrid films. These two nanofillers were admixed in varying loadings of 0.25 to 1.00 wt%, and the morphology, thermal properties, and optical transparency of the hybrid films were investigated and compared. The results suggest that the thermal properties of the CPI hybrid films can be improved by adding only a small amount of nanofiller. Transmission electron microscopy results of the CPI hybrid film containing two types of fillers suggested that the fillers were well dispersed in the nano-size in the matrix polymer; however, some of the fillers were observed as agglomerated particles above the critical concentration of 0.50 wt%.

18.
Sci Rep ; 12(1): 8769, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35610502

ABSTRACT

To support the development of eco-friendly hybrid perovskite solar cells, structural, thermal, and physical properties of the lead-free hybrid perovskite [NH3(CH2)3NH3]CuBr4 were investigated using X-ray diffraction (XRD), differential scanning calorimetry, thermogravimetric analysis, and nuclear magnetic resonance spectroscopy. The crystal structure confirmed by XRD was monoclinic, and thermodynamic stability was observed at approximately 500 K without any phase transition. The large changes in the 1H chemical shifts of NH3 and those in C2 close to N are affected by N-H∙∙∙Br hydrogen bonds because the structural geometry of CuBr4 changed significantly. The 1H and 13C spin-lattice relaxation times (T1ρ) showed very similar molecular motions according to the Bloembergen-Purcell-Pound theory at low temperatures; however, the 1H T1ρ values representing energy transfer were about 10 times lesser than those of 13C T1ρ. Finally, the 1H and 13C T1ρ values of [NH3(CH2)3NH3]MeBr4 (Me = Cu, Zn, and Cd) were compared with those reported previously. 1H T1ρ was affected by the paramagnetic ion of the anion, while 13C T1ρ was affected by the MeBr4 structure of the anion; 13C T1ρ values in Me = Cu and Cd with the octahedral MeBr6 structure had longer values than those in Me = Zn with the tetrahedral MeBr4 structure. We believe that these detailed insights on the physical properties will play a crucial role in the development of eco-friendly hybrid perovskite solar cells.

19.
RSC Adv ; 12(15): 8852-8861, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35424866

ABSTRACT

Thermotropic liquid crystalline copolyesters (Co-TLCPs) were synthesized by varying the hydroquinone (HQ) molar ratio from 1-5 with respect to the 2,5-diethoxyterephthalic acid (ETA) monomer. The thermal properties and liquid crystalline mesophases of the synthesized Co-TLCP were investigated. All of the Co-TLCPs synthesized using a HQ molar ratio of 1-5 showed a nematic liquid crystalline phase. Among the Co-TLCPs obtained using HQ in various molar ratios, the most stable physical properties and a clear liquid crystalline phase were obtained when HQ was 4 mol. Among the various Co-TLCPs synthesized, hybrids were prepared using Co-TLCP synthesized with a 1 : 4 = ETA : HQ ratio and organoclay. A 1-10% loading of the organoclay Cloisite 93A was employed per weight of TLCP, and the clay was dispersed using the melt intercalation method. Among the Co-TLCP hybrids, the morphology and thermal properties of the hybrids were investigated according to the changes in the Cloisite 93A in the 1-10 wt% range. In general, the thermal properties were superior when the organoclay loading was 3 wt% and were inferior when the organoclay amount was 5 wt% or more. This result was confirmed by the dispersibility of the clay through transmission electron microscopy.

20.
Molecules ; 27(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35335204

ABSTRACT

To transform tall goldenrods, which are invasive alien plant that destroy the ecosystem of South Korea, into useful materials, cellulose fibers isolated from tall goldenrods are applied as EMI shielding materials in this study. The obtained cellulose fibers were blended with CNTs, which were used as additives, to improve the electrical conductivity. TGCF/CNT papers prepared using a facile paper manufacturing process with various weight percent ratios and thickness were carbonized at high temperatures and investigated as EMI shielding materials. The increase in the carbonization temperature, thickness, and CNT content enhanced the electrical conductivity and EMI SE of TGCF/CNT carbon papers. TGCF/CNT-15 papers, with approximately 4.5 mm of thickness, carbonized at 1300 °C exhibited the highest electrical conductivity of 6.35 S cm-1, indicating an EMI SE of approximately 62 dB at 1.6 GHz of the low frequency band. Additionally, the obtained TGCF/CNT carbon papers were flexible and could be bent and wound without breaking.


Subject(s)
Nanotubes, Carbon , Solidago , Cellulose , Ecosystem , Electromagnetic Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...