Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 651: 123792, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38190952

ABSTRACT

The majority of tablets manufactured contain lubricants to reduce friction during ejection. However, especially for plastically deforming materials, e.g., microcrystalline cellulose (MCC), the internal addition of lubricants is known to reduce tablet tensile strength. This reduction is caused by the surface coverage by lubricant particles, the extent of which depends on both process and formulation parameters. Previously published models to predict the lubrication effect on mechanical strength do not account for changes in the excipient particle size. In this study, the impact of both lubricant concentration and mixing time on the tensile strength of tablets consisting of three different grades of MCC and four grades of magnesium stearate (MgSt) was evaluated. By taking into account the particle size of the applied excipients, a unifying relationship between the theoretically estimated surface coverage and compactibility reduction was identified. Evaluating the dispersion kinetics of MgSt as a function of time reveals a substantial impact of the initial surface coverage on the dispersion rate, while the minimal tensile strength was found to be comparable for the majority of formulations. In summary, the presented work extends the knowledge of lubricant dispersion and facilitates the reduction of necessary experiments during the development of new tablet formulations.


Subject(s)
Cellulose , Excipients , Stearic Acids , Particle Size , Excipients/chemistry , Stearic Acids/chemistry , Tablets/chemistry , Lubricants/chemistry , Tensile Strength
2.
Pharm Res ; 40(10): 2479-2492, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37752367

ABSTRACT

INTRODUCTION: Tablets are commonly produced by internally adding particulate lubricants, which are known to possibly lower the mechanical strength of tablets. This reduction is caused by the coverage of matrix forming components by lubricant particles, resulting in decreased interparticulate interactions. The known incompatibilities with some active compounds of the predominantly used lubricant, magnesium stearate, call for the in-depth characterization of alternative lubricants. PURPOSE: Investigation of the dispersion behavior of five commonly applied pharmaceutical lubricants by mathematically modeling the dispersion kinetics for short and extended mixing times. METHODS: The dispersion behavior of five different pharmaceutical lubricants were examined by systematically varying lubricant concentration and mixing time of binary formulations and evaluating the kinetic of tensile strength reduction by theoretically estimating the surface coverage based on particle sizes. RESULTS: For short mixing times, a unifying relationship between compactibility reduction and theoretical surface coverage was identified. Subsequently, for extended mixing times, distinct differences in the shear strength and dispersion kinetics of the investigated lubricants were found. CONCLUSIONS: The lubricant particle size controls the tensile strength reduction if short mixing times are applied. For extended mixing times, the investigated lubricants can be divided into two groups in terms of dispersion kinetics. Possible underlying reasons are discussed in detail in order to enhance the general understanding of lubricant dispersions in tablet formulations.


Subject(s)
Lubricants , Stearic Acids , Drug Compounding , Tensile Strength , Excipients , Tablets
3.
Front Bioeng Biotechnol ; 11: 1254136, 2023.
Article in English | MEDLINE | ID: mdl-37731767

ABSTRACT

In biotechnological processes, filamentous microorganisms are known for their broad product spectrum and complex cellular morphology. Product formation and cellular morphology are often closely linked, requiring a well-defined level of mechanical stress to achieve high product concentrations. Macroparticles were added to shake flask cultures of the filamentous actinomycete Lentzea aerocolonigenes to find these optimal cultivation conditions. However, there is currently no model concept for the dependence of the strength and frequency of the bead-induced stress on the process parameters. Therefore, shake flask simulations were performed for combinations of bead size, bead concentration, bead density and shaking frequency. Contact analysis showed that the highest shear stresses were caused by bead-bottom contacts. Based on this, a newly generated characteristic parameter, the stress area ratio (SAR), was defined, which relates the bead wall shear and normal stresses to the total shear area. Comparison of the SAR with previous cultivation results revealed an optimum pattern for product concentration and mean product-to-biomass related yield coefficient. Thus, this model is a suitable tool for future optimization, comparison and scaling up of shear-sensitive microorganism cultivation. Finally, the simulation results were validated using high-speed recordings of the bead motion on the bottom of the shake flask.

4.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37528062

ABSTRACT

Industrial biotechnology uses microbial cells to produce a wide range of products. While the genetic and molecular properties of these organisms are well understood, less is known about their mechanical properties. Previous work has established a test procedure for single yeast cells using a nanoindentation instrument equipped with a flat-punch probe, which allows single cells (Saccharomyces cerevisiae) to be compressed between two parallel surfaces. The resulting force-displacement curves clearly showed the bursting of the cells and were used to determine characteristics such as burst force and burst energy. Other studies have investigated the influence of growth conditions and measurement conditions on the mechanical characteristics. The recent study examined the mechanical characteristics according to the temperature during compression. Temperature from 0°C to 25°C has no significant effect on the micromechanical properties. Increasing the temperature up to 35°C causes a reduction in the strength of the cells. At even higher temperatures, up to 50°C, the burst force and burst energy increase significantly. A deformation geometry model was used to calculate the cell wall tensile strength as a function of temperature. The results of these studies may facilitate the identification of efficient conditions for cell disruption and product recovery in downstream biotechnological processes.


Subject(s)
Hot Temperature , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Temperature , Pressure , Biotechnology
5.
Int J Pharm X ; 6: 100196, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37448986

ABSTRACT

Understanding of generation, extent and location of thermomechanical stress in small-scale (< 3 g) ram and twin-screw melt-extrusion is crucial for mechanistic correlations to the stability of protein particles (lysozyme and BSA) in PEG-matrices. The aim of the study was to apply and correlate experimental and numerical approaches (1D and 3D) for the evaluation of extrusion process design on protein stability. The simulation of thermomechanical stress during extrusion raised the expectation of protein degradation and protein particle grinding during extrusion, especially when TSE was used. This was confirmed by experimental data on protein stability. Ram extrusion had the lowest impact on protein unfolding temperatures, whereas TSE showed significantly reduced unfolding temperatures, especially in combination with kneading elements containing screws. In TSE, the mechanical stress in the screws always exceeded the shear stress in the die, while mechanical stress within ram extrusion was generated in the die, only. As both extruder designs revealed homogeneously distributed protein particles over the cross section of the extrudates for all protein-loads (20-60%), the dispersive power of TSE revealed not to be decisive. Consequently, the ram extruder would be favored for the production of stable protein-loaded extrudates in small scale.

6.
Int J Pharm ; 642: 123100, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37286022

ABSTRACT

Probiotic microorganisms provide health benefits to the patient when administered in a viable form and in sufficient doses. To ensure this, dry dosage forms are preferred, with tablets in particular being favored due to several advantages. However, the microorganisms must first be dried as gently as possible. Here, the model organism Saccharomyces cerevisiae was dried by spray drying. Various additives were tested for their ability to improve yeast cell survival during drying. In addition, the influence of various process parameters such as inlet temperature, outlet temperature, spray rate, spray pressure and nozzle diameter was investigated. It was possible to dry the yeast cells in such a way that a substantial proportion of living microorganisms was recovered after reconstitution. Systematic variation of formulation and process parameters showed that the use of protective additives is essential and that the outlet temperature determines the survival rate. The subsequent compression of the spray-dried yeast reduced viability and survival could hardly be improved by the addition of excipients, but the tabletability of spray-dried yeast protectant particles was quite good. For the first time, loss of viability during compaction of spray-dried microorganisms was correlated with the specific densification, allowing a deeper understanding of the mechanism of cell inactivation during tableting.


Subject(s)
Saccharomyces cerevisiae , Spray Drying , Humans , Temperature , Excipients , Powders
7.
Eur J Pharm Biopharm ; 188: 161-169, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37207944

ABSTRACT

As tablets are convenient to administer to patients, ensure safe dosing and allow cost-effective production on a large scale, they are the favored dosage form for numerous active pharmaceutical ingredients but also for the administration of viable probiotic microorganisms. Granules with viable yeast cells (Saccharomyces cerevisiae) formed by fluidized bed granulation with dicalcium phosphate (DCP), lactose (LAC) or microcrystalline cellulose (MCC) as carrier materials were tableted using a compaction simulator. Besides the compression stress, the compression speed was systematically studied by varying consolidation time and dwell time. The microbial survival as well as physical properties of the tablets, e.g., porosity and tensile strength, were determined. Higher compression stresses result in lower porosities. While on the one hand this has a detrimental effect on microbial survival (due to increased pressure and shear stress during particle rearrangement / densification), on the other hand it results in higher tensile strengths. At the same compression stress, a prolonged dwell time resulted in lower porosity and thus in lower survival rates but higher tensile strength. Against that, consolidation time showed no significant influence on the considered tablet quality attributes. Since changes of the tensile strength related survival rate were negligible (due to opposite but balancing dependence on porosity), high production speeds could be used for tableting of these granules without additional loss of viability, as long as tablets with the same tensile strength are produced.


Subject(s)
Excipients , Humans , Kinetics , Tablets/chemistry , Excipients/chemistry , Tensile Strength , Porosity
8.
Int J Biol Macromol ; 242(Pt 2): 124855, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37187417

ABSTRACT

Functional nanofibrils from globular proteins are usually formed by heating for several hours at pH 2.0, which induces acidic hydrolysis and consecutive self-association. The functional properties of these micro-metre-long anisotropic structures are promising for biodegradable biomaterials and food applications, but their stability at pH > 2.0 is low. The results presented here show that modified ß-lactoglobulin can also form nanofibrils by heating at neutral pH without prior acidic hydrolysis; the key is removing covalent disulfide bonds via precision fermentation. The aggregation behaviour of various recombinant ß-lactoglobulin variants was systemically studied at pH 3.5 and 7.0. The suppression of intra- and intermolecular disulfide bonds by eliminating one to three out of the five cysteines makes the non-covalent interactions more prevalent and allow for structural rearrangement. This stimulated the linear growth of worm-like aggregates. Full elimination of all five cysteines led to the transformation of worm-like aggregates into actual fibril structures (several hundreds of nanometres long) at pH 7.0. This understanding of the role of cysteine in protein-protein interactions will help to identify proteins and protein modifications to form functional aggregates at neutral pH.


Subject(s)
Amyloid , Lactoglobulins , Lactoglobulins/genetics , Lactoglobulins/chemistry , Amyloid/chemistry , Amyloidogenic Proteins , Hydrogen-Ion Concentration , Disulfides/chemistry
9.
Front Bioeng Biotechnol ; 11: 1171055, 2023.
Article in English | MEDLINE | ID: mdl-37091334

ABSTRACT

Lentzea aerocolonigenes, as an actinomycete, is a natural producer of the antibiotic and antitumoral drug rebeccamycin. Due to the filamentous cellular morphology handling in cultivations is challenging; therefore, morphology engineering techniques are mandatory to enhance productivity. One promising approach described in the literature is the addition of mineral particles in the micrometer range to precisely adjust cellular morphology and the corresponding product synthesis (microparticle-enhanced cultivation, MPEC). Glass microparticles are introduced in this study as a novel supplementation type for bioprocess intensification in filamentous organisms. Several investigations were conducted to screen for an optimal particle setup, including particle size and concentration regarding their impact and effects on enhanced productivity, microparticle incorporation behavior into the biopellets, the viability of pellets, and morphological changes. Glass microparticles (10 g·L-1) with a median diameter of 7.9 µm, for instance, induced an up to fourfold increase in product synthesis accompanied by overall enhanced viability of biomass. Furthermore, structural elucidations showed that biopellets isolated from MPEC tend to have lower hyphal density than unsupplemented control pellets. In this context, oxygen microprofiling was conducted to better understand how internal structural changes interwind with oxygen supply into the pellets. Here, the resulting oxygen profiles are of a contradictive trend of steeper oxygen consumption with increasing glass microparticle supplementation. Eventually, MPEC was combined with another promising cultivation strategy, the supplementation of soy lecithin (7.5 g·L-1), to further increase the cultivation performance. A combination of both techniques in an optimized setup resulted in a rebeccamycin concentration of 213 mg·L-1 after 10 days of cultivation, the highest value published so far for microparticle-supplemented shake flask cultivations of L. aerocolonigenes.

10.
Eur J Pharm Biopharm ; 187: 24-33, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37037386

ABSTRACT

Modeling of structural and mechanical tablet properties consisting of multiple components, based on a minimum of experimental data is of high interest, in order to minimize time- and cost-intensive experimental trials in the development of new tablet formulations. The majority of commonly available models use the compressibility and compactibility of constituent components and establish mixing rules between those components, in order to predict the tablet properties of formulations containing multiple components. However, their applicability is limited to single materials, which form intact tablets (e.g. lactose, cellulose) and therefore, they cannot be applied for lubricants. Lubricants are required in the majority of industrial tablet formulations and usually influence the mechanical strength of tablets. This study combines the multi-component compaction model of Reynolds et al. (2017) with a recently published lubrication model (Puckhaber et al. 2020) to describe the impact of multiple components on a formulation consisting of two diluents and a lubricant. By that, this model combination displays a meaningful extension of existing compaction models and allows the systematic prediction of properties of lubricated multi-component tablets.


Subject(s)
Excipients , Lubricants , Lubricants/chemistry , Tensile Strength , Excipients/chemistry , Tablets , Cellulose/chemistry
11.
Eur J Pharm Biopharm ; 187: 57-67, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37080323

ABSTRACT

Tablets are the favored dosage form for numerous active pharmaceutical ingredients, among others because they are easy to take, ensure safe dosing and allow cost-effective production on a large scale. This dosage form is also frequently chosen for the administration of viable probiotic microorganisms. Saccharomyces cerevisiae cells granulated in a fluidized bed process, with dicalcium phosphate (DCP), lactose (LAC) and microcrystalline cellulose (MCC) as carrier materials, were tableted using a compaction simulator, varying the compression stress. The tablets were analyzed regarding physical properties, e.g., porosity and tensile strength, as well as microbial survival. Carrier material and compression stress showed a significant influence on survival rate and physical tablet properties. The dependencies were related to material specific deformation characteristics and linked to mechanistic approaches to explain the different sensitivities.


Subject(s)
Excipients , Tablets/chemistry , Excipients/chemistry , Tensile Strength
12.
Pharmaceutics ; 15(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36986745

ABSTRACT

The administration of living microorganisms is of special interest, with regard to probiotic microorganisms providing health benefits to the patient. Effective dosage forms require the preservation of microbial viability until administration. Storage stability can be improved by drying, and the tablet is an especially attractive final solid dosage form due to its ease of administration and its good patient compliance. In this study, drying of the yeast Saccharomyces cerevisiae via fluidized bed spray granulation is investigated, as the probiotic Saccharomyces boulardii is a variety of it. Fluidized bed granulation enables faster drying than lyophilization on the one hand and lower temperatures than spray drying on the other hand, which are the two predominantly used techniques for life-sustaining drying of microorganisms. Yeast cell suspensions enriched with protective additives were sprayed onto the carrier particles of common tableting excipients, namely, dicalcium phosphate (DCP), lactose (LAC) and microcrystalline cellulose (MCC). Different protectants, such as mono-, di-, oligo- and polysaccharides, but also skimmed milk powder and one alditol, were tested; as they themselves, or chemically similar molecules, are known from other drying technologies to stabilize biological structures such as cell membranes, and thus, improve survival during dehydration. With the combined use of trehalose and skimmed milk powder, survival rates were 300 times higher than without the use of protective additives. In addition to these formulation aspects, the influence of process parameters such as inlet temperature and spray rate were considered. The granulated products were characterized regarding their particle size distribution, moisture content and the viability of the yeast cells. It has been shown that thermal stress on the microorganisms is especially critical, which can be reduced, for example, by reducing the inlet temperature or increasing the spray rate; however, formulation parameters such as cell concentration also influenced survival. The results were used to specify the influencing factors on the survival of microorganisms during fluidized bed granulation and to derive their linkages. Granules based on the three different carrier materials were tableted and the survival of the microorganisms was evaluated and linked to the tablet tensile strength achieved. Using LAC enabled the highest survival of the microorganisms throughout the considered process chain.

13.
Pharmaceutics ; 15(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986770

ABSTRACT

The purpose of this study was to investigate the deformation behavior of non-spherical particles during high-load compaction using the multi-contact discrete element method (MC-DEM). To account for non-spherical particles, the bonded multi-sphere method (BMS), which incorporates intragranular bonds between particles, and the conventional multi-sphere (CMS), where overlaps between particles are allowed to form a rigid body, were used. Several test cases were performed to justify the conclusions of this study. The bonded multi-sphere method was first employed to study the compression of a single rubber sphere. This method's ability to naturally handle large elastic deformations is demonstrated by its agreement with experimental data. This result was validated further through detailed finite element simulations (multiple particle finite element method (MPFEM)). Furthermore, the conventional multi-sphere (CMS) approach, in which overlaps between particles are allowed to form a rigid body, was used for the same objective, and revealed the limitations of this method in successfully capturing the compression behavior of a single rubber sphere. Finally, the uniaxial compaction of a microcrystalline cellulose-grade material, Avicel® PH 200 (FMC BioPolymer, Philadelphia, PA, USA), subjected to high confining conditions was studied using the BMS method. A series of simulation results was obtained with realistic non-spherical particles and compared with the experimental data. For a system composed of non-spherical particles, the multi-contact DEM showed very good agreement with experimental data.

14.
Eng Life Sci ; 22(12): 725-743, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36514528

ABSTRACT

Filamentous microorganisms are used as molecular factories in industrial biotechnology. In 2007, a new approach to improve productivity in submerged cultivation was introduced: microparticle-enhanced cultivation (MPEC). Since then, numerous studies have investigated the influence of microparticles on the cultivation. Most studies considered MPEC a morphology engineering approach, in which altered morphology results in increased productivity. But sometimes similar morphological changes lead to decreased productivity, suggesting that this hypothesis is not a sufficient explanation for the effects of microparticles. Effects of surface chemistry on particles were paid little attention, as particles were often considered chemically-inert and bioinert. However, metal oxide particles strongly interact with their environment. This review links morphological, physical, and chemical properties of microparticles with effects on culture broth, filamentous morphology, and molecular biology. More precisely, surface chemistry effects of metal oxide particles lead to ion leaching, adsorption of enzymes, and generation of reactive oxygen species. Therefore, microparticles interfere with gene regulation, metabolism, and activity of enzymes. To enhance the understanding of microparticle-based morphology engineering, further interactions between particles and cells are elaborated. The presented description of phenomena occurring in MPEC eases the targeted choice of microparticles, and thus, contributes to improving the productivity of microbial cultivation technology.

15.
Materials (Basel) ; 15(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36500056

ABSTRACT

The return to the Moon is an important short-term goal of NASA and other international space agencies. To minimize mission risks, technologies, such as rovers or regolith processing systems, must be developed and tested on Earth using lunar regolith simulants that closely resemble the properties of real lunar soil. So far, no singular lunar simulant can cover the multitude of use cases that lunar regolith involves, and most available materials are poorly characterized. To overcome this major gap, a unique modular system for flexible adaptable novel lunar regolith simulants was developed and chemically characterized in earlier works. To supplement this, the present study provides comprehensive investigations regarding geotechnical properties of the three base regolith simulant systems: TUBS-M, TUBS-T, and TUBS-I. To evaluate the engineering and flow properties of these heterogeneous materials under various conditions, shear tests, particle size analyses, scanning electron microscope observations, and density investigations were conducted. It was shown that small grains <25 µm (lunar dust) are highly compressive and cohesive even at low external stress. They are particularly important as a large amount of fine dust is present in lunar regolith and simulants (x50 = 76.7 to 96.0 µm). Further, ring shear and densification tests revealed correlations with damage mechanisms caused by local stress peaks for grains in the mm range. In addition, an explanation for the occurrence of considerable differences in the literature-based data for particle sizes was established by comparing various measurement procedures. The present study shows detailed geotechnical investigations of novel lunar regolith simulants, which can be used for the development of equipment for future lunar exploration missions and in situ resource utilization under realistic conditions. The results also provide evidence about possible correlations and causes of known soil-induced mission risks that so far have mostly been described phenomenologically.

16.
Int J Pharm ; 628: 122300, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36272512

ABSTRACT

In rotary tablet presses, the powder flow into the dies is typically facilitated by paddle feeder. For internally lubricated formulations, the shear forces exerted by the paddle rotation can result in a considerable decrease in tablet strength due to the dispersion of lubricant agglomerates. Available models to describe the lubricant dispersion in paddle feeder allow only a limited quantitative description and transferability of the process. This study introduces an empirical dispersion kinetic which is able to precisely describe the reduction of compactibility due to the shear stresses inside the paddle feeder, even for inhomogeneously flowing material. Additionally, by blending different grades of magnesium stearate at three levels of lubricant concentration with two different grades of microcrystalline cellulose, the impact of bulk properties on the lubrication dispersion in the feed frame was investigated. It was shown, that for a given formulation, the kinetics of compactibility reduction are comparable for different magnesium stearate concentrations. Additionally, the bulk properties of the applied magnesium stearate grade critically affect the dispersion kinetics as well as the maximum compactibility reduction inside the feed frame. In summary, the developed model represents a meaningful extension of the currently available process models for pharmaceutical tablet lubrication.


Subject(s)
Excipients , Lubricants , Lubricants/chemistry , Excipients/chemistry , Tablets/chemistry , Stearic Acids/chemistry , Lubrication , Powders
17.
ACS Appl Mater Interfaces ; 14(34): 38824-38834, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35982536

ABSTRACT

The energy density of lithium-ion batteries (LIBs) can be meaningfully increased by utilizing Si-on-graphite composites (Si@Gr) as anode materials, because of several advantages, including higher specific capacity and low cost. However, long cycling stability is a key challenge for commercializing these composites. In this study, to solve this issue, we have developed a multifunctional polymeric artificial solid-electrolyte interphase (A-SEI) protective layer on carbon-coated Si@Gr anode particles (making Si@Gr/C-SCS) to prolong the cycling stability in LIBs. The coating is made of sulfonated chitosan (SCS) that is crosslinked with glutaraldehyde promoting good ionic conduction together with sufficient mechanical strength of the A-SEI. The focused ion beam-scanning electron microscopy and high-resolution transmission electron microscopy images show that the SCS is uniformly coated on the composite particles with thickness in nanometer. The anodes are investigated in Li metal cells Si@Gr/C-SCS||Li metal) and lithium-ion full-cells (LiNi0.6Co0.2Mn0.2O2 (NCM-622)||Si@Gr/C-SCS) to understand the material/electrode intrinsic degradation as well as the impact of the polymer coating on active lithium losses because of the continuous SEI (re)formation. The anode composites exhibit a high capacity reaching over 600 mAh g-1, and even without electrolyte optimization, the Si@Gr/C-SCS illustrates a superior long cycle life performance of up to 1000 cycles (over 67% capacity retention). The excellent long-term cycling stability of the anodes was attributed to the SCS polymer coating acting as the A-SEI. The simple polymer coating process is highly interesting in guiding the preparation of long-cycle-life electrode materials of high-energy LIB cells.

18.
Int J Pharm ; 626: 122117, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35985527

ABSTRACT

Various studies investigate the predictability of the compressibility and compactibility of tablet formulations based on the behaviour of the pure materials. However, these studies are limited to a few materials so far probably because of the complexity of the powder compaction process. One approach preventing the excessive increase in complexity is the extension of the investigations from pure materials to binary powder mixtures. The focus of this study is on the predictability of the compressibility and compactibility of binary mixtures consisting of an active pharmaceutical ingredient (API) and the excipient microcrystalline cellulose. Three APIs with markedly different deformation behaviour were used. The API concentration and type are systematically varied. For all three material combinations it is found that the in-die compressibility of the binary mixtures can be precisely predicted based on the characteristic compression parameters of the raw materials using the extended in-die compression function in combination with a volume-based linear mixing rule. Since the tablet porosity (out-of-die) also follows a linear mixing rule, the predictability can be further extended using the method of Katz et al. In contrast, the influence of the API concentration on compactibility or rather on tablet tensile strength is non-linear and strongly dependent on the deformation behaviour of the API, making the predictability more difficult. Neither the approach of Reynolds et al. nor this of Kuentz and Leuenberger are able to predict the compactibility when clear deviations from a linear mixing rule appear.


Subject(s)
Excipients , Drug Compounding , Excipients/chemistry , Porosity , Powders/chemistry , Tablets/chemistry , Tensile Strength
19.
Pharmaceutics ; 14(8)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36015314

ABSTRACT

The production of nanosuspensions of poorly soluble active pharmaceutical ingredients (API) is a popular technique to counteract challenges regarding bioavailability of such active substances. A subsequent drying of the nanosuspensions is advantageous to improve the long-term stability and the further processing into solid oral dosage forms. However, associated drying operations are critical, especially with regard to nanoparticle growth, loss in redispersibility and associated compromised bioavailability. This work extends a previous study regarding the applicability of an API (itraconazole) nanosuspension as a granulation liquid in a fluidized bed process with focus on the influence of applied formulation parameters on the structure of obtained nanoparticle-loaded granules and their nanoparticle redispersibility. Generally, a higher dissolution rate of the carrier material (glass beads, lactose, mannitol or sucrose) and a higher content of a matrix former/hydrophilic polymer (PVP/VA or HPMC) in the granulation liquid resulted in the formation of coarser and more porous granules with improved nanoparticle redispersibility. HPMC was found to have advantages as a polymer compared with PVP/VA. In general, a better redispersibility of the nanoparticles from the granules could be associated with better dispersion of the API nanoparticles at the surface of the granules as deduced from the thickness of nanoparticle-loaded layers around the granules. The layer thickness on granules was assessed by means of confocal Raman microscopy. Finally, the dispersion of the nanoparticles in the granule layers was exemplarily described by calculation of theoretical mean nanoparticle distances in the granule layers and was correlated with data obtained from redispersibility studies.

20.
Int J Pharm ; 617: 121557, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35134481

ABSTRACT

The tableting of most pharmaceutical formulations requires the addition of lubricants to reduce ejection forces, prevent tooling damage and tablet defects. The internal addition of lubricants is known to reduce tablet tensile strength, especially of mainly plastically deforming materials. To date, available models show only limited quantitative predictive accuracy for the influence of lubricant concentration on the mechanical strength of tablets. This study aims to fill this gap and present a model based on the Ryshkewitch-Duckworth equation that can estimate the compactibility profiles of lubricated formulations. Binary mixtures of different diluents (microcrystalline cellulose and lactose) were prepared with common lubricants (magnesium stearate and sodium stearyl fumarate) and subsequently tableted. The resulting compactibility profiles were fitted using the Ryshkewitch-Duckworth equation and the derived fit parameters (kb and σ0) were correlated with the lubricant concentration. Subsequently, an empirical model was established which requires a minimum of experimental data and is able to predict the tensile strength of lubricated diluent tablets. Consequently, the developed empirical model is an interesting and valuable addition to the existing multi-component compacting models available and offers the opportunity to accelerate experimentation in the development of new tablet formulations.


Subject(s)
Excipients , Stearic Acids , Drug Compounding , Excipients/chemistry , Lubricants/chemistry , Lubrication , Stearic Acids/chemistry , Tablets , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...