Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(11): 105269, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36300000

ABSTRACT

All living things speak chemistry. The challenge is to reveal the vocabulary, the odorants that enable communication across phylogenies and to translate them to physiological, behavioral, and ecological function. Olfactory receptors (ORs) interface animals with airborne odorants. Expression in heterologous cells makes it possible to interrogate single ORs and to identify cognate ligands. The cosmopolitan, anthropophilic strain of the vinegar fly Drosophila melanogaster depends on human resources and housing for survival. Curiously, humans sense the pheromone (Z)-4-undecenal (Z4-11Al) released by single fly females. A screening of all human ORs shows that the most highly expressed OR10A6 is tuned to Z4-11Al. Females of an ancestral African fly strain release a blend of Z4-11Al and Z4-9Al that produces a different aroma, which is how we distinguish these fly strains by nose. That flies and humans sense Z4-11Al via dedicated ORs shows how convergent evolution shapes communication channels between vertebrate and invertebrate animals.

2.
ISME J ; 16(10): 2388-2397, 2022 10.
Article in English | MEDLINE | ID: mdl-35831484

ABSTRACT

To ensure dispersal, many parasites and pathogens behaviourally manipulate infected hosts. Other pathogens and certain insect-pollinated flowers use sexual mimicry and release deceptive mating signals. However, it is unusual for pathogens to rely on both behavioural host manipulation and sexual mimicry. Here, we show that the host-specific and behaviourally manipulating pathogenic fungus, Entomophthora muscae, generates a chemical blend of volatile sesquiterpenes and alters the profile of natural host cuticular hydrocarbons in infected female housefly (Musca domestica) cadavers. Healthy male houseflies respond to the fungal compounds and are enticed into mating with female cadavers. This is advantageous for the fungus as close proximity between host individuals leads to an increased probability of infection. The fungus exploits the willingness of male flies to mate and benefits from altering the behaviour of uninfected male host flies. The altered cuticular hydrocarbons and emitted volatiles thus underlie the evolution of an extended phenotypic trait.


Subject(s)
Diptera , Houseflies , Animals , Cadaver , Diptera/microbiology , Female , Flowers , Houseflies/microbiology , Hydrocarbons , Male
3.
J Econ Entomol ; 115(4): 999-1007, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35385117

ABSTRACT

Since the early phase of the intercontinental dispersal of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), fermentation baits have been used for monitoring. Self-made lures and commercial products are often based on wine and vinegar. From an ecological perspective, the formulation of these baits is expected to target especially vinegar flies associated with overripe fruit, such as Drosophila melanogaster (Meigen) (Diptera: Drosophilidae). Hanseniaspora uvarum (Niehaus) (Ascomycota: Saccharomyceta) is a yeast closely associated with D. suzukii and fruit, and furthermore attractive to the flies. Based on this relation, H. uvarum might represent a suitable substrate for the development of lures that are more specific than vinegar and wine. In the field, we therefore, compared H. uvarum to a commercial bait that was based on vinegar and wine with respect to the number of trapped D. suzukii relative to other drosophilids and arthropods. Trap captures were higher with the commercial bait but specificity for D. suzukii was greater with H. uvarum. Moreover, H. uvarum headspace extracts, as well as a synthetic blend of H. uvarum volatiles, were assayed for attraction of D suzukii in a wind tunnel and in the field. Headspace extracts and the synthetic blend induced strong upwind flight in the wind tunnel and confirmed attraction to H. uvarum volatiles. Furthermore, baited with H. uvarum headspace extract and a drowning solution of aqueous acetic acid and ethanol, 74% of field captured arthropods were D. suzukii. Our findings suggest that synthetic yeast headspace formulations might advance the development of more selective monitoring traps with reduced by-catch.


Subject(s)
Drosophila , Hanseniaspora , Insect Control , Acetic Acid/pharmacology , Animals , Drosophila melanogaster , Fruit , Insect Control/methods , Yeasts
4.
Insects ; 8(2)2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28598383

ABSTRACT

The greater wax moth, Galleria mellonella Linnaeus, is a ubiquitous pest of the honeybee, Apis mellifera Linnaeus, and Apis cerana Fabricius. The greater wax moth larvae burrow into the edge of unsealed cells with pollen, bee brood, and honey through to the midrib of honeybee comb. Burrowing larvae leave behind masses of webs which causes galleriasis and later absconding of colonies. The damage caused by G. mellonella larvae is severe in tropical and sub-tropical regions, and is believed to be one of the contributing factors to the decline in both feral and wild honeybee populations. Previously, the pest was considered a nuisance in honeybee colonies, therefore, most studies have focused on the pest as a model for in vivo studies of toxicology and pathogenicity. It is currently widespread, especially in Africa, and the potential of transmitting honeybee viruses has raised legitimate concern, thus, there is need for more studies to find sustainable integrated management strategies. However, our knowledge of this pest is limited. This review provides an overview of the current knowledge on the biology, distribution, economic damage, and management options. In addition, we provide prospects that need consideration for better understanding and management of the pest.

SELECTION OF CITATIONS
SEARCH DETAIL
...