Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
2.
Aging (Albany NY) ; 14(23): 9445-9457, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36375476

ABSTRACT

Mutations in Lmna usually cause a series of human disorders, such as premature aging syndrome (progeria) involving the skeletal system. Gangliosides are known to be involved in cell surface differentiation and proliferation of stem cells. However, the role of gangliosides in Lmna dysfunctional mesenchymal stem cells (MSCs) is unclear. Therefore, Ganglioside's role in osteogenesis of Lmna dysfunctional MSCs analyzed. As a result of the analysis, it was confirmed that the expression of ganglioside GD1a was significantly reduced in MSCs derived from LmnaDhe/+ mice and in MSCs subjected to Lamin A/C knockdown using siRNA. Osteogenesis-related bone morphogenetic protein-2 and Osteocalcin protein, and gene expression were significantly decreased due to Lmna dysfunction. A result of treating MSCs with Lmna dysfunction with ganglioside GD1a (3 µg/ml), significantly increased bone differentiation in ganglioside GD1a treatment to Lmna-mutated MSCs. In addition, the level of pERK1/2, related to bone differentiation mechanisms was significantly increased. Ganglioside GD1a was treated to Congenital progeria LmnaDhe/+ mice. As a result, femur bone volume in ganglioside GD1a-treated LmnaDhe/+ mice was more significantly increased than in the LmnaDhe/+ mice. Therefore, it was confirmed that the ganglioside GD1a plays an important role in enhancing osteogenic differentiation in MSC was a dysfunction of Lmna.


Subject(s)
Gangliosides , Mesenchymal Stem Cells , Osteogenesis , Progeria , Animals , Humans , Mice , Cell Differentiation , Gangliosides/metabolism , Lamin Type A/genetics , MAP Kinase Signaling System , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Progeria/genetics , Progeria/metabolism
3.
Sensors (Basel) ; 21(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34450722

ABSTRACT

The consumption of seaweed is increasing year by year worldwide. Therefore, the foreign object inspection of seaweed is becoming increasingly important. Seaweed is mixed with various materials such as laver and sargassum fusiforme. So it has various colors even in the same seaweed. In addition, the surface is uneven and greasy, causing diffuse reflections frequently. For these reasons, it is difficult to detect foreign objects in seaweed, so the accuracy of conventional foreign object detectors used in real manufacturing sites is less than 80%. Supporting real-time inspection should also be considered when inspecting foreign objects. Since seaweed requires mass production, rapid inspection is essential. However, hyperspectral imaging techniques are generally not suitable for high-speed inspection. In this study, we overcome this limitation by using dimensionality reduction and using simplified operations. For accuracy improvement, the proposed algorithm is carried out in 2 stages. Firstly, the subtraction method is used to clearly distinguish seaweed and conveyor belts, and also detect some relatively easy to detect foreign objects. Secondly, a standardization inspection is performed based on the result of the subtraction method. During this process, the proposed scheme adopts simplified and burdenless calculations such as subtraction, division, and one-by-one matching, which achieves both accuracy and low latency performance. In the experiment to evaluate the performance, 60 normal seaweeds and 60 seaweeds containing foreign objects were used, and the accuracy of the proposed algorithm is 95%. Finally, by implementing the proposed algorithm as a foreign object detection platform, it was confirmed that real-time operation in rapid inspection was possible, and the possibility of deployment in real manufacturing sites was confirmed.


Subject(s)
Foreign Bodies , Seaweed , Algorithms , Hyperspectral Imaging , Vegetables
4.
Sensors (Basel) ; 20(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365999

ABSTRACT

Modern image processing techniques use three-dimensional (3D) images, which contain spatial information such as depth and scale, in addition to visual information. These images are indispensable in virtual reality, augmented reality (AR), and autonomous driving applications. We propose a novel method to estimate monocular depth using a cycle generative adversarial network (GAN) and segmentation. In this paper, we propose a method for estimating depth information by combining segmentation. It uses three processes: segmentation and depth estimation, adversarial loss calculations, and cycle consistency loss calculations. The cycle consistency loss calculation process evaluates the similarity of two images when they are restored to their original forms after being estimated separately from two adversarial losses. To evaluate the objective reliability of the proposed method, we compared our proposed method with other monocular depth estimation (MDE) methods using the NYU Depth Dataset V2. Our results show that the benchmark value for our proposed method is better than other methods. Therefore, we demonstrated that our proposed method is more efficient in determining depth estimation.

5.
Anim Cells Syst (Seoul) ; 22(3): 157-164, 2018.
Article in English | MEDLINE | ID: mdl-30460093

ABSTRACT

Pig-human xenotransplantation can trigger cell-mediated immune responses. We explored the role of gangliosides in inflammation related to immune rejection in xenotransplantation. Co-culture of xenogeneic cells (pig-MSCs and RAW264.7) was used to emulate xenotransplantation conditions. MTT assay results indicated that cell viability was significantly decreased in pADMSCs co-cultured with RAW264.7 cells. GM1 and GM3 were highly expressed in pADMSCs co-cultured with RAW264.7 cells. pADMSCs co-cultured with RAW264.7 cells strongly expressed pro-inflammatory proteins such as COX-2, iNOS, p50, p65, pIκBα, and TNF-α. GM1-knockdown pADMSCs co-cultured with RAW 264.7 cells did not show significantly altered cell viability, but pro-inflammatory proteins were markedly inhibited. Co-culture of pADMSCs with RAW264.7 cells induced significant phosphorylation (p) of JNK1/2 and pERK1/2. However, pERK1/2 and pJNK1/2 were decreased and MEK1/2 and Raf1 were suppressed in GM1-knockdown pADMSCs co-cultured with RAW264.7 cells. Thus, the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways were significantly upregulated in response to increases of GM1 in co-cultured xenogeneic cells. However, the inflammatory response was suppressed in co-culture of GM1-knockdown pADMSCs with RAW264.7 cells via down-regulation of the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways. Therefore, the ganglioside GM1 appears to play a major role in the inflammatory response in xenotransplantation via the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways.

6.
Immunol Lett ; 178: 131-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27592361

ABSTRACT

Agonistic anti-4-1BB antibodies (Abs) play a central role in immunomodulatory conditions that control the pathogenesis of immune-mediated autoimmune and allergic diseases. However, the effects of agonistic anti-4-1BB Abs have not been examined in an experimental mouse model of psoriasis. Therefore, we investigated the protective effects of agonistic anti-4-1BB Abs, using imiquimod (IMQ)-induced psoriasis-like dermatitis in mice, a condition histologically and clinically similar to human psoriasis. We found that administration of agonistic anti-4-1BB Abs (10mg/kg) significantly alleviated the severity of IMQ-induced psoriasis-like skin inflammation in mice, with reduced histologic symptoms, including inflammatory infiltration, parakeratosis, and hyperkeratosis. Subsequent analyses revealed that the production of Th17 cytokines (IL-17A and IL-23) in the serum and skin of IMQ-induced mice was significantly inhibited by agonistic anti-4-1BB Abs (10mg/kg), although Th1 cytokines (TNF-α and IFN-γ) were not. Moreover, administration of agonistic anti-4-1BB Abs (10mg/kg) induced a relative increase of CD4(+)FoxP3(+) regulatory T (Treg) cells in the spleen and draining lymph node (DLN). Taken together, our data provide evidence that agonistic anti-4-1BB Abs possesses immunosuppressive properties in IMQ-induced psoriasis-like skin inflammation, providing insight into the immunomodulatory effect of agonistic anti-4-1BB Abs for psoriasis immunotherapy.


Subject(s)
Aminoquinolines/adverse effects , Antibodies, Monoclonal/pharmacology , Protective Agents/pharmacology , Psoriasis/etiology , Psoriasis/pathology , Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists , Animals , Biopsy , Cytokines/metabolism , Disease Models, Animal , Female , Imiquimod , Inflammation Mediators/metabolism , Mice , Phenotype , Psoriasis/drug therapy , Psoriasis/metabolism , Skin/drug effects , Skin/metabolism , Skin/pathology , Splenomegaly , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/metabolism
7.
J Vet Sci ; 17(3): 279-87, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-26726030

ABSTRACT

Aristolochia manshuriensis Kom (AMK) is an herb used as a traditional medicine; however, it causes side effects such as nephrotoxicity and carcinogenicity. Nevertheless, AMK can be applied in specific ways medicinally, including via ingestion of low doses for short periods of time. Non-alcoholic steatohepatitis (NASH) induced the hepatocyte injury and inflammation. The protective effects of AMK against NASH are unclear; therefore, in this study, the protective effects of AMK ethyl acetate extract were investigated in a high-fat diet (HFD)-induced NASH model. We found decreased hepatic steatosis and inflammation, as well as increased levels of lipoproteins during AMK extract treatment. We also observed decreased hepatic lipid peroxidation and triglycerides, as well as suppressed hepatic expression of lipogenic genes in extract-treated livers. Treatment with extract decreased the activation of c-jun N-terminal kinase 1/2 (JNK1/2) and increased the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). These results demonstrate that the protective effect of the extract against HFD-induced NASH occurred via reductions in reactive oxygen species production, inflammation suppression, and apoptosis related to the suppression of JNK1/2 activation and increased ERK1/2 phosphorylation. Taken together, these results indicate that that ethyl acetate extract of AMK has potential therapeutic effects in the HFD-induced NASH mouse model.


Subject(s)
Aristolochia/chemistry , Diet, High-Fat , Extracellular Signal-Regulated MAP Kinases/genetics , JNK Mitogen-Activated Protein Kinases/genetics , Liver/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Acetates/chemistry , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects
8.
Chem Res Toxicol ; 29(1): 117-24, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26656393

ABSTRACT

Aristolochic acid (AA) is a natural bioactive substance found in Chinese herbs that induce toxicity during ovarian maturation of animals and humans. Apoptosis is induced by various types of damage and governs the progression of biological cell removal that controls the equilibrium between cell growth and death. However, the AA toxicity mechanism during testis maturation in mouse has not been elucidated and was thus the focus of the present study. This study used TM4 Sertoli cells and an ICR mouse model, both of which were injected with aristolochic acid I (AAI) for 4 weeks. Testis dimensions and weight were surveyed to define AAI cytotoxicity in the mice testis. The MTT assay was used to analyze the cytotoxicity of AAI in TM4 Sertoli cells. An apoptosis expression mediator was analyzed through Western blotting, while the measure of apoptosis-induced cell death of TM4 Sertoli cells and testis tissues was analyzed by the TUNEL assay. We found that AAI strongly inhibits survival in TM4 cells and that AAI significantly activated apoptosis-induced cell death in TM4 Sertoli cells and mice testis tissue. In addition, AAI suppressed the expression of B-cell lymphoma 2 (Bcl-2), a factor related to anti-apoptosis. It markedly improved pro-apoptotic protein expression, including Bcl-2-associated X protein, poly(ADP-ribose) polymerase, and caspase-3 and -9. Furthermore, we observed that AAI significantly reduced the size and weight of mouse testis. Moreover, germ cells and somatic cells in testis were markedly damaged by AAI. In addition, we found that AAI significantly inhibits ERK1/2 and Akt activation in TM4 Sertoli cells and testis tissue. The data obtained in this study indicate that AAI causes severe injury for the period of testis development by impeding apoptosis related to the Akt and ERK1/2 pathway.


Subject(s)
Aristolochic Acids/toxicity , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Testis/drug effects , Testis/metabolism , Animals , Apoptosis/drug effects , Aristolochic Acids/chemistry , Cell Survival/drug effects , Cells, Cultured , Enzyme Activation/drug effects , Male , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Structure , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Structure-Activity Relationship , Testis/growth & development
9.
Int J Mol Sci ; 15(11): 21105-19, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25405740

ABSTRACT

We have generated the transgenic Tabaco plants expressing multiple monoclonal antibody (mAb) CO7-1A × BR55 by cross-pollinating with mAb CO17-1A and mAb BR55. We have demonstrated the anti-cancer effect of plant-derived multiple mAb CO17-1A × BR55. We find that co-treatment of colorectal mAbs (anti-epithelial cellular adhesion molecule (EpCAM), plant-derived monoclonal antibody (mAb(P)) CO17-1A and mAb(P) CO17-1A × BR55) with RAW264.7 cells significantly inhibited the cell growth in SW620 cancer cells. In particular, multi mAb(P) CO17-1A × BR55 significantly and efficiently suppressed the growth of SW620 cancer cells compared to another mAbs. Apoptotic death-positive cells were significantly increased in the mAb(P) CO17-1A × BR55-treated. The mAb(P) CO17-1A × BR55 treatment significantly decreased the expression of B-Cell lymphoma-2 (BCl-2), but the expression of Bcl-2-associated X protein (Bax), and cleaved caspase-3 were markedly increased. In vivo, the mAb(P) CO17-1A × BR55 significantly and efficiently inhibited the growth of colon tumors compared to another mAbs. The apoptotic cell death and inhibition of pro-apoptotic proteins expression were highest by treatment with mAb(P) CO17-1A × BR55. In addition, the mAb(P) CO17-1A × BR55 significantly inhibited the extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation in cancer cells and tumors. Therefore, this study results suggest that multiple mAb(P) CO17-1A × BR55 has a significant effect on apoptosis-mediated anticancer by suppression of ERK1/2 phosphorylation in colon cancer compared to another mAbs. In light of these results, further clinical investigation should be conducted on mAb(P) CO17-1A × BR55 to determine its possible chemopreventive and/or therapeutic efficacy against human colon cancer.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antigens, Neoplasm/immunology , Colorectal Neoplasms/therapy , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/immunology , Animals , Antibodies, Monoclonal/genetics , Antigens, Neoplasm/genetics , Cell Line , Cell Line, Tumor , Colon/immunology , Colon/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Humans , Immunotherapy , Male , Mice , Mice, Inbred BALB C , Phosphorylation , Plants, Genetically Modified/genetics , Rectum/immunology , Rectum/pathology , Nicotiana/genetics
10.
Chem Res Toxicol ; 27(12): 2128-35, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25406029

ABSTRACT

Aristolochic acids are natural products found in Chinese herbs of the Aristolochiaceae family. Aristolochic acid I (AAI) is a potent carcinogen and was found to be toxic in animal and clinical studies. Apoptosis is a rapid, selective process of physiological cell deletion that regulates the balance between cell proliferation and cell death and is induced by various kinds of damage. However, the toxicity of AAI during ovarian maturation in the mouse is unclear and is the subject of the present investigation. We used Chinese hamster ovary-K1 (CHO-K1) cells and an AAI injection mouse model: MTT assay was used to assess AA toxicity to cells; ovary size and weight were measured to determine the toxicity of AA to mouse ovary; western blot was used to assess apoptosis; TUNEL assay was used to evaluate apoptotic cell death; and immunohistochemistry was used to examine the local expression of apoptotic proteins in ovary tissue. We found that AAI significantly inhibits the viability of CHO-K1 cells and strongly induces apoptotic cell death in CHO-K1 cells and in mouse ovary. In addition, we observed that AAI markedly increases the expression of pro-apoptotic proteins, including Bax, caspase-3, caspase-9, and poly(ADP) ribose polymerase (PARP). In contrast, anti-apoptotic proteins, such as Bcl-2 and survivin, were decreased by AAI treatment. Furthermore, we observed that ovary size and weight were significantly reduced and that the number of ovulated oocytes was markedly suppressed in AAI-treated mice. These results suggest that AAI strongly induces toxic damage during ovarian maturation by inhibiting Akt phosphorylation-mediated suppression of apoptosis.


Subject(s)
Aristolochic Acids/toxicity , Ovary/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Animals , Body Weight/drug effects , CHO Cells , Cricetinae , Cricetulus , Female , Humans , Organ Size/drug effects , Ovary/enzymology , Phosphorylation
11.
Mar Drugs ; 12(9): 4898-911, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25255129

ABSTRACT

Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Colonic Neoplasms/drug therapy , Seaweed/chemistry , Animals , Female , Humans , Male
12.
Mol Cell Biochem ; 385(1-2): 257-64, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24091917

ABSTRACT

Baicalin is a flavonoid derived from the root of Scutellaria baicalensis and exhibits a broad spectrum of biological activities including anti-adipogenesis. However, the inhibitory role of baicalin in the early stage of 3T3-L1 adipocyte differentiation relevant to the signaling up-stream of peroxisome proliferator-activated receptor-γ (PPAR-γ) and CCAAT/enhancer binding proteins (C/EBPs) expression is unclear, and is the subject of the present investigation. We used 3T3-L1 preadipocytes for adipocyte differentiation, Oil Red-O staining for the intracellular lipid accumulation assay, and real-time polymerase chain reaction (RT-PCR) for assaying the expression of major adipocyte transcription factors. We found that baicalin markedly suppressed the Akt phosphorylation in early stage of adipocytes differentiation. In addition, we observed that baicalin and LY294002 (as an inhibitor of Akt phosphorylation) significantly inhibited adipocyte differentiation by down-regulating several adipocyte-specific transcription factors, including PPAR-γ and C/EBPs in 3T3-L1 preadipocytes. Furthermore, we observed that baicalin significantly suppressed the Akt phosphorylation by inhibiting phosphoinositide-dependent kinase 1 (PDK1). These results indicate that the anti-adipogenesis effect of baicalin involves down-regulation of major transcription factors in 3T3-L1 adipocyte differentiation including PPAR-γ, C/EBP-ß, and C/EBP-α through the down-regulation of PDK1/Akt phosphorylation.


Subject(s)
Adipocytes/cytology , Adipocytes/enzymology , Down-Regulation/drug effects , Flavonoids/pharmacology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Adipogenesis/drug effects , Animals , Cell Differentiation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Flavonoids/chemistry , Gene Expression Regulation/drug effects , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , raf Kinases/metabolism
13.
BMB Rep ; 46(11): 527-32, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24152915

ABSTRACT

Gangliosides are complex glycosphingolipids that are the major component of cytoplasmic cell membranes, and play a role in the control of biological processes. Human mesenchymal stem cells (hMSCs) have received considerable attention as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. In this study, we focus on various functional roles of gangliosides in the differentiation of hMSCs into osteoblasts or neuronal cells. A relationship between gangliosides and epidermal growth factor receptor (EGFR) activation during osteoblastic differentiation of hMSCs was observed, and the gangliosides may play a major role in the regulation of the differentiation. The roles of gangliosides in osteoblast differentiation are dependent on the origin of hMSCs. The reduction of ganglioside biosynthesis inhibited the neuronal differentiation of hMSCs during an early stage of the differentiation process, and the ganglioside expression can be used as a marker for the identification of neuronal differentiation from hMSCs.


Subject(s)
Cell Differentiation , Gangliosides/metabolism , Mesenchymal Stem Cells/cytology , Neurogenesis , Osteoblasts/cytology , Osteogenesis , Adult Stem Cells/cytology , Cell Differentiation/drug effects , Cell Lineage , Gangliosides/pharmacology , Humans , Neurogenesis/drug effects , Neurons/cytology , Neurons/drug effects , Osteogenesis/drug effects
14.
Article in English | MEDLINE | ID: mdl-23762131

ABSTRACT

Hwangryunhaedok-tang (HRT) has been long used as traditional medicine in Asia. However, inhibitory role of HRT is unclear in early stage of 3T3-L1 adipocyte differentiation related to signaling. In the present study, we investigated the inhibitory effects of HRT on upstream signaling of peroxisome proliferation-activity receptor- γ (PPAR- γ ) and CCAAT/enhancer binding protein- ß (C/EBP- ß ) expression in differentiation of 3T3-L1 preadipocytes. We found that HRT significantly inhibited the adipocyte differentiation by downregulating several adipocyte-specific transcription factors including PPAR- γ , C/EBP- α , and C/EBP- ß in 3T3-L1 preadipocytes. Furthermore, we observed that HRT markedly inhibited the differentiation media-mediated phosphorylation of Raf/extracellular mitogen-activated protein kinase 1 (MEK1)/signal-regulated protein kinase 1/2 (ERK1/2) and phosphorylation of phosphoinositide-dependent kinase 1 (PDK1)/Akt. These results indicate that anti-adipogenesis mechanism involves the downregulation of the major transcription factors of adipogenesis including PPAR- γ and C/EBP- α through inhibition of Raf/MEK1/ERK1/2 phosphorylation and PDK1/Akt phosphorylation by HRT. Furthermore, high performance liquid chromatography (HPLC) analysis showed HRT contains active antiobesity constituents such as palmatine, berberine, geniposide, baicalin, baicalein, and wogonin. Taken together, this study suggested that anti-adipogenesis effects of HRT were accounted by downregulation of Raf/MEK1/ERK1/2 pathway and PDK1/Akt pathway during 3T3-L1 adipocyte differentiation.

15.
PLoS One ; 7(11): e49530, 2012.
Article in English | MEDLINE | ID: mdl-23166699

ABSTRACT

Aristolochia manshuriensis Kom (AMK) is a traditional medicinal herb used for the treatment of arthritis, rheumatism, hepatitis, and anti-obesity. Because of nephrotoxicity and carcinogenicity of AMK, there are no pharmacological reports on anti-obesity potential of AMK. Here, we showed AMK has an inhibitory effect on adipocyte differentiation of 3T3-L1 cells along with significantly decrease in the lipid accumulation by downregulating several adipocyte-specific transcription factors including peroxisome proliferation-activity receptor γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBP-α) and C/EBP-ß, which are critical for adipogenesis in vitro. AMK also markedly activated the extracellular signal-regulated protein kinase 1/2 (ERK1/2) pathway including Ras, Raf1, and mitogen-activated protein kinase kinase 1 (MEK1), and significantly suppressed Akt pathway by inhibition of phosphoinositide-dependent kinase 1 (PDK1). Aristolochic acid (AA) and ethyl acetate (EtOAc) fraction of AMK with AA were significantly inhibited TG accumulation, and regulated two pathway (ERK1/2 and Akt) during adipocyte differentiation, and was not due to its cytotoxicity. These two pathways were upstream of PPAR-γ and C/EBPα in the adipogenesis. In addition, gene expressions of secreting factors such as fatty acid synthase (FAS), adiponectin, lipopreotein lipase (LPL), and aP2 were significantly inhibited by treatment of AMK during adipogenesis. We used the high-fat diet (HFD)-induced obesity mouse model to determine the inhibitory effects of AMK on obesity. Oral administration of AMK (62.5 mg/kg/day) significantly decreased the fat tissue weight, total cholesterol (TC), and low density lipoprotein-cholesterol (LDL-C) concentration in the blood. The results of this study suggested that AMK inhibited lipid accumulation by the down-regulation of the major transcription factors of the adipogensis pathway including PPAR-γ and C/EBP-α through regulation of Akt pathway and ERK 1/2 pathway in 3T3-L1 adipocytes and HFD-induced obesity mice, and AA may be main act in inhibitory effects of AMK during adipocyte differentiation.


Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Aristolochia/chemistry , Cell Differentiation/drug effects , MAP Kinase Signaling System/drug effects , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Adipogenesis/drug effects , Adipogenesis/genetics , Animals , Cell Survival/drug effects , Diet, High-Fat , Disease Models, Animal , Gene Expression Regulation/drug effects , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Phosphorylation , Plant Extracts/administration & dosage , RNA, Messenger/genetics , Transcription Factors/genetics
16.
Article in English | MEDLINE | ID: mdl-22844332

ABSTRACT

Arisolochiae species plants containing aristolochic acids I and II (AA I and AA II) are well known to cause aristolochic acid nephropathy (AAN). Recently, there are various approaches to use AAs-containing herbs after the removal of their toxic factors. However, there is little information about genotoxicity of Arisolochiae manshuriensis Kom. (AMK) per se. To obtain safety information for AMK, its genotoxicity was evaluated in accordance with OECD guideline. To evaluate genotoxicity of AMK, we tested bacterial reverse mutation assay, chromosomal aberration test, and micronucleus test. Here, we also determined the amounts of AA I and II in AMK (2.85 ± 0.08 and 0.50 ± 0.02 mg/g extract, resp.). In bacterial reverse mutation assay, AMK dose-dependently increased revertant colony numbers in TA98, TA100 and TA1537 regardless of metabolic activation. AMK increased the incidence of chromosomal aberration in Chinese hamster ovary-K1 cells, but there was no statistically significant difference. The incidences of micronucleus in bone marrow erythrocyte were significantly increased in mice after oral administration of AMK (5000 mg/kg), comparing with those of vehicle group (P < 0.05). The results of three standard tests suggest that the genotoxicity of AMK is directly related to the AAs contents in AMK.

17.
Lab Anim Res ; 28(4): 255-63, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23326286

ABSTRACT

Gangliosides are ubiquitous components of the membranes of mammalian cells that are thought to play important roles in various cell functions such as cell-cell interaction, cell adhesion, cell differentiation, growth control, and signaling. However, the role that gangliosides play in the immune rejection response after xenotransplantation is not yet clearly understood. In this study, the regulatory effects of human leukocytes on ganglioside expression in primary cultured micro-pig aortic endothelial cells (PAECs) were investigated. To determine the impact of human leukocytes on the expression of gangliosides in PAECs, we performed high-performance thin layer chromatography (HPTLC) in PAECs incubated with FBS, FBS containing human leukocytes, human serum containing human leukocytes, and FBS containing TNF-α. Both HPTLC and immunohistochemistry analyses revealed that PAECs incubated with FBS predominantly express the gangliosides GM3, GM1, and GD3. However, the expression of GM1 significantly decreased in PAECs incubated for 5 h with TNF-α (10 ng/mL), 10% human serum containing human leukocytes, and 10% FBS containing human leukocytes. Taken together, these results suggest that human leukocytes induced changes in the expression profile of ganglioside GM1 similar to those seen upon treatment of PAECs with TNF-α. This finding may be relevant for designing future therapeutic strategies intended to prolong xenograft survival.

18.
BMB Rep ; 44(12): 799-804, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22189683

ABSTRACT

Gangliosides play an important role in neuronal differentiation processes. The regulation of ganglioside levels is related to the induction of neuronal cell differentiation. In this study, the ST8Sia5 gene was transfected into mESCs and then differentiated into neuronal cells. Interestingly, ST8Sia5 gene transfected mESCs expressed GQ1b by HPTLC and immunofluorescence analysis. To investigate the effects of GQ1b over-expression in neurogenesis, neuronal cells were differentiated from GQ1b expressing mESCs in the presence of retinoic acid. In GQ1b expressing mESCs, increased EBs formation was observed. After 4 days, EBs were co-localized with GQ1b and nestin, and GFAP. Moreover, GQ1b co-localized with MAP-2 expressing cells in GQ1b expressing mESCs in 7-day-old EBs. Furthermore, GQ1b expressing mESCs increased the ERK1/2 MAP kinase pathway. These results suggest that the ST8Sia5 gene increases ganglioside GQ1b and improves neuronal differentiation via the ERK1/2 MAP kinase pathway.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gangliosides/metabolism , Neurons/cytology , Neurons/metabolism , Animals , Cells, Cultured , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism
19.
Exp Mol Med ; 43(12): 693-701, 2011 Dec 31.
Article in English | MEDLINE | ID: mdl-22033101

ABSTRACT

The human colorectal carcinoma-associated GA733 antigen epithelial cell adhesion molecule (EpCAM) was initially described as a cell surface protein selectively expressed in some myeloid cancers. Gangliosides are sialic acid-containing glycosphingolipids involved in inflammation and oncogenesis. We have demonstrated that treatment with anti-EpCAM mAb and RAW264.7 cells significant inhibited the cell growth in SW620 cancer cells, but neither anti-EpCAM mAb nor RAW264.7 cells alone induced cytotoxicity. The relationship between ganglioside expression and the anti- cancer effects of anti-EpCAM mAb and RAW264.7 was investigated by high-performance thin-layer chromatography. The results demonstrated that expression of GM1 and GD1a significantly increased in the ability of anti-EpCAM to inhibit cell growth in SW620 cells. Anti-EpCAM mAb treatment increased the expression of anti-apoptotic proteins such as Bcl-2, but the expression of pro-apoptotic proteins Bax, TNF-α, caspase-3, cleaved caspase-3, and cleaved caspase-8 were unaltered. We observed that anti-EpCAM mAb significantly inhibited the growth of colon tumors, as determined by a decrease in tumor volume and weight. The expression of anti-apoptotic protein was inhibited by treatment with anti-EpCAM mAb, whereas the expression of pro-apoptotic proteins was increased. These results suggest that GD1a and GM1 were closely related to anticancer effects of anti-EpCAM mAb. In light of these results, further clinical investigation should be conducted on anti-EpCAM mAb to determine its possible chemopreventive and/or therapeutic efficacy against human colon cancer.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antigens, Neoplasm/immunology , Cell Adhesion Molecules/immunology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , Gangliosides/immunology , Animals , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Colon/drug effects , Colon/immunology , Colon/metabolism , Colon/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Epithelial Cell Adhesion Molecule , Gangliosides/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Mice, Inbred BALB C
20.
Exp Mol Med ; 43(7): 379-88, 2011 Jul 30.
Article in English | MEDLINE | ID: mdl-21654188

ABSTRACT

Gangliosides have been suggested to play important roles in various functions such as adhesion, cell differentiation, growth control, and signaling. Mouse follicular development, ovulation, and luteinization during the estrous cycle are regulated by several hormones and cell-cell interactions. In addition, spermatogenesis in seminiferous tubules of adult testes is also regulated by several hormones, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and cell-cell interactions. The regulation of these processes by hormones and cell-cell interactions provides evidence for the importance of surface membrane components, including gangliosides. During preimplantation embryo development, a mammalian embryo undergoes a series of cleavage divisions whereby a zygote is converted into a blastocyst that is sufficiently competent to be implanted in the ma ternal uterus and continue its development. Mouse embryonic stem (mES) cells are pluripotent cells derived from mouse embryo, specifically, from the inner cell mass of blastocysts. Differentiated neuronal cells are derived from mES cells through the formation of embryonic bodies (EBs). EBs recapitulate many aspects of lineage-specific differentiation and temporal and spatial gene expression patterns during early embryogenesis. Previous studies on ganglioside expression during mouse embryonic development (including during in vitro fertilization, ovulation, spermatogenesis, and embryogenesis) reported that gangliosides were expressed in both undifferentiated and differentiated (or differentiating) mES cells. In this review, we summarize some of the advances in our understanding of the functional roles of gangliosides during the stages of mouse embryonic development, including ovulation, spermatogenesis, and embryogenesis, focusing on undifferentiated and differentiated mES cells (neuronal cells).


Subject(s)
Cell Differentiation , Embryonic Development , Embryonic Stem Cells/cytology , Gangliosides/metabolism , Animals , Embryonic Stem Cells/metabolism , Gametogenesis , Mice , Urogenital System/cytology , Urogenital System/embryology , Urogenital System/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...