Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 36(38): 11207-11214, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32872790

ABSTRACT

In hydrophobic mini- and microchannels, slug flow with moving contact lines is typically generated under various two-phase flow conditions. There is a significant pressure drop in this flow pattern with moving contact lines, which is closely related to the dynamic contact angles. Researchers have investigated dynamic contact angles experimentally for decades, but due to the limitations of visualization techniques, these experiments have typically been conducted in low Weber number regions (We < 10-3). In this study, we clearly visualized the dynamic contact angles of a liquid slug in high Weber number regions (10-3 < We <1) via synchrotron X-ray imaging with high temporal (∼1000 fps) and spatial (∼2 µm/pixel) resolutions. We precisely measured the pressure drop with moving contact lines in a hydrophobic minichannel (inner diameter = 1.018 mm). On the basis of our experimental data, we verified previous correlations for dynamic contact angles and explored the relationship between pressure drop with moving contact lines and dynamic contact angles.

2.
Langmuir ; 35(27): 9093-9099, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31250651

ABSTRACT

To increase the efficiency of jumping-droplet condensation, this study proposes a hierarchical superhydrophobic surface that promotes coalescence-induced jumping. Inspired by the phenomenon in which a growing droplet moves spontaneously within a superhydrophobic V structure, we fabricated nanograssed zigzag structures on the surface to induce the spontaneous motion of condensed droplets. The direction of the motion was parallel to the surface, so the condensed droplets easily coalesced on it. Compared with a conventional nanograssed superhydrophobic surface, the proposed surface increased the frequency of coalescence-induced jumping by ≥17 times and increased the cumulative volume of jumping droplets by ∼1.8 times. The proposed surface has great potential to increase the efficiency of applications such as water- and energy-harvesting and cooling systems that exploit jumping-droplet condensation.

3.
Langmuir ; 35(19): 6460-6467, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31017797

ABSTRACT

Despite considerable research interest due to omnipresent and practical importance of interfacial phenomena (e.g., wetting and dewetting) on nanotextured surfaces in the academic and industrial fields, direct visualization of the behavior and shapes of liquid-vapor interfaces between nanoscale structures remains an arduous task because of the resolution limitations of visualization techniques. In this study, we succeeded in a first-hand visualization of the behavior and shapes of the liquid-vapor interfaces of a water droplet between nanometer-scale pillar during evaporation by introducing a synchrotron X-ray imaging technique with spatially high resolution (40 nm/a pixel). On the basis of the visualization data, we intensively analyzed and discussed the spreading and evaporation phenomena of a liquid droplet on hydrophilic nanotextured surfaces.

4.
Langmuir ; 35(10): 3607-3614, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30776243

ABSTRACT

In this study, the existing knowledge on the wetting criterion, that is, the intrinsic contact angle, for distinguishing between hydrophilic and hydrophobic textured surfaces is verified experimentally. A precise apparent contact angle is measured on micro-, nano-, and micro-/nanotextured surfaces to quantitatively define the surface-wetting conditions. In particular, X-ray tomography is introduced to measure precise geometric morphologies of nano- and micro-/nanotextured surfaces, and the wetting state of the textured surfaces is clearly visualized using synchrotron X-ray imaging. By comparing previous theoretical models and experimental results, it is verified that the intrinsic contact angle for distinguishing between hydrophilic and hydrophobic textured surfaces should be corrected from 90° to 43°. In addition, nonwetting phenomena in the region of the intrinsic contact angle between 43° and 90° are discussed.

5.
Sci Adv ; 4(2): e1701571, 2018 02.
Article in English | MEDLINE | ID: mdl-29492453

ABSTRACT

Over the last several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally because of limitations in the available visualization techniques and the complexity of the phenomena. To overcome these limitations and elucidate the CHF enhancement mechanism on the structured surfaces, we introduce synchrotron x-ray imaging with high spatial (~2 µm) and temporal (~20,000 Hz) resolutions. This technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.

6.
Langmuir ; 31(6): 1950-7, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25635466

ABSTRACT

For several decades, evaporation phenomena have been intensively investigated for a broad range of applications. However, the dynamics of contact line depinning during droplet evaporation has only been inductively inferred on the basis of experimental data and remains unclear. This study focuses on the dynamics of contact line depinning during droplet evaporation based on thermodynamics. Considering the decrease in the Gibbs free energy of a system with different evaporation modes, a theoretical model was developed to estimate the receding contact angle during contact line depinning as a function of surface conditions. Comparison of experimentally measured and theoretically modeled receding contact angles indicated that the dynamics of contact line depinning during droplet evaporation was caused by the most favorable thermodynamic process encountered during constant contact radius (CCR mode) and constant contact angle (CCA mode) evaporation to rapidly reach an equilibrium state during droplet evaporation.

SELECTION OF CITATIONS
SEARCH DETAIL
...