Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Am J Pathol ; 188(3): 715-727, 2018 03.
Article in English | MEDLINE | ID: mdl-29294300

ABSTRACT

Fractures are common, with an incidence of 13.7 per 1000 adults annually. Systemic agents have been widely used for enhancing bone regeneration; however, the efficacy of these therapeutics for the management and prevention of fracture remains unclear. NEL-like protein 1 (NELL-1) is a potent pro-osteogenic cytokine that has been modified with polyethylene glycol (PEG)ylation [PEGylated NELL-1 (NELL-PEG)] to enhance its pharmacokinetics for systemic therapy. Our aim was to investigate the effects of systemic administration of NELL-PEG on fracture healing in mice and on overall bone properties in uninjured bones. Ten-week-old CD-1 mice were subjected to an open osteotomy of bilateral radii and treated with weekly injections of NELL-PEG or PEG phosphate-buffered saline as control. Systemic injection of NELL-PEG resulted in improved bone mineral density of the fracture site and accelerated callus union. After 4 weeks of treatment, mice treated with NELL-PEG exhibited substantially enhanced callus volume, callus mineralization, and biomechanical properties. NELL-PEG injection significantly augmented bone regeneration, as confirmed by high expression of bone turnover rate, bone formation rate, and mineral apposition rate. Consistently, the immunohistochemistry results also confirmed a high bone remodeling activity in the NELL-PEG-treated group. Our findings suggest that weekly injection of NELL-PEG may have the clinical potential to accelerate fracture union and enhance overall bone properties, which may help prevent subsequent fractures.


Subject(s)
Bone Density/drug effects , Calcium-Binding Proteins/therapeutic use , Fracture Healing/drug effects , Fractures, Bone/drug therapy , Glycoproteins/therapeutic use , Radius/injuries , Animals , Calcium-Binding Proteins/pharmacology , Female , Glycoproteins/pharmacology , Mice , Models, Animal , Osteotomy , Radius/drug effects , Treatment Outcome
3.
JCI Insight ; 2(12)2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28614787

ABSTRACT

NELL-1 is a secreted, osteogenic protein first discovered to control ossification of the cranial skeleton. Recently, NELL-1 has been implicated in bone maintenance. However, the cellular determinants of NELL-1's bone-forming effects are still unknown. Here, recombinant human NELL-1 (rhNELL-1) implantation was examined in a clinically relevant nonhuman primate lumbar spinal fusion model. Prolonged rhNELL-1 protein release was achieved using an apatite-coated ß-tricalcium phosphate carrier, resulting in a local influx of stem cell antigen-1-positive (Sca-1+) mesenchymal progenitor cells (MPCs), and complete osseous fusion across all samples (100% spinal fusion rate). Murine studies revealed that Nell-1 haploinsufficiency results in marked reductions in the numbers of Sca-1+CD45-CD31- bone marrow MPCs associated with low bone mass. Conversely, rhNELL-1 systemic administration in mice showed a marked anabolic effect accompanied by increased numbers of Sca-1+CD45-CD31- bone marrow MPCs. Mechanistically, rhNELL-1 induces Sca-1 transcription among MPCs, in a process requiring intact Wnt/ß-catenin signaling. In summary, NELL-1 effectively induces bone formation across small and large animal models either via local implantation or intravenous delivery. NELL-1 induces an expansion of a bone marrow subset of MPCs with Sca-1 expression. These findings provide compelling justification for the clinical translation of a NELL-1-based therapy for local or systemic bone formation.

4.
Nat Commun ; 6: 7362, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26082355

ABSTRACT

NELL-1 is a secreted, osteoinductive protein whose expression rheostatically controls skeletal ossification. Overexpression of NELL-1 results in craniosynostosis in humans and mice, whereas lack of Nell-1 expression is associated with skeletal undermineralization. Here we show that Nell-1-haploinsufficient mice have normal skeletal development but undergo age-related osteoporosis, characterized by a reduction in osteoblast:osteoclast (OB:OC) ratio and increased bone fragility. Recombinant NELL-1 binds to integrin ß1 and consequently induces Wnt/ß-catenin signalling, associated with increased OB differentiation and inhibition of OC-directed bone resorption. Systemic delivery of NELL-1 to mice with gonadectomy-induced osteoporosis results in improved bone mineral density. When extended to a large animal model, local delivery of NELL-1 to osteoporotic sheep spine leads to significant increase in bone formation. Altogether, these findings suggest that NELL-1 deficiency plays a role in osteoporosis and demonstrate the potential utility of NELL-1 as a combination anabolic/antiosteoclastic therapeutic for bone loss.


Subject(s)
Bone and Bones/pathology , Nerve Tissue Proteins/administration & dosage , Nerve Tissue Proteins/deficiency , Osteoporosis/drug therapy , Adult , Aged , Aged, 80 and over , Animals , Calcium-Binding Proteins , Cells, Cultured , Drug Evaluation, Preclinical , Female , Haploinsufficiency , Humans , Integrin beta Chains/metabolism , Male , Mice , Middle Aged , Osteoporosis/etiology , Osteoporosis/metabolism , Osteoporosis/pathology , Phenotype , Sheep , Wnt Proteins/metabolism , Young Adult , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...