Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 586: 157-162, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34847441

ABSTRACT

Sarcopenia is the age-related loss of muscle mass and function and no pharmacological medication has been approved for its treatment. We established an atrogin-1/MAFbx promoter assay to find drug candidates that inhibit myotube atrophy. Alverine citrate (AC) was identified using high-throughput screening of an existing drug library. AC is an established medicine for stomach and intestinal spasms. AC treatment increased myotube diameter and inhibited atrophy signals induced by either C26-conditioned medium or dexamethasone in cultured C2C12 myoblasts. AC also enhanced myoblast fusion through the upregulation of fusion-related genes during C2C12 myoblast differentiation. Oral administration of AC improves muscle mass and physical performance in aged mice, as well as hindlimb-disused mice. Taken together, our data suggest that AC may be a novel therapeutic candidate for improving muscle weakness, including sarcopenia.


Subject(s)
Aging/genetics , Cell Differentiation/drug effects , Muscular Atrophy/prevention & control , Parasympatholytics/pharmacology , Propylamines/pharmacology , Sarcopenia/prevention & control , Aging/metabolism , Animals , Biomarkers/metabolism , Cadherins/genetics , Cadherins/metabolism , Caveolin 3/genetics , Caveolin 3/metabolism , Cell Line , Dexamethasone/pharmacology , Disease Models, Animal , Gene Expression , High-Throughput Screening Assays , Immobilization , Integrin beta1/genetics , Integrin beta1/metabolism , Mice , Mice, Inbred C57BL , Muscle Development/genetics , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Myoblasts/drug effects , Myoblasts/metabolism , Myoblasts/pathology , Sarcopenia/genetics , Sarcopenia/metabolism , Sarcopenia/pathology
2.
J Cachexia Sarcopenia Muscle ; 11(5): 1336-1350, 2020 10.
Article in English | MEDLINE | ID: mdl-32495509

ABSTRACT

BACKGROUND: The microRNAs (miRNAs) down-regulated in aged mouse skeletal muscle were mainly clustered within the delta-like homologue 1 and the type III iodothyronine deiodinase (Dlk1-Dio3) genomic region. Although clustered miRNAs are coexpressed and regulate multiple targets in a specific signalling pathway, the function of miRNAs in the Dlk1-Dio3 cluster in muscle aging is largely unknown. We aimed to ascertain whether these miRNAs play a common role to regulate age-related muscle atrophy. METHODS: To examine anti-atrophic effect of miRNAs, we individually transfected 42 miRNA mimics in fully differentiated myotubes and analysed their diameters. The luciferase reporter assay using target 3' untranslated region (UTR) and RNA pull-down assay were employed to ascertain the target predicted by the TargetScan algorithm. To investigate the therapeutic potential of the miRNAs in vivo, we generated adeno-associated virus (AAV) serotype 9 expressing green fluorescent protein (GFP) (AAV9-GFP) bearing miR-376c-3p and infected it into the tibialis anterior muscle of old mice. We performed morphometric analysis and measured ex vivo isometric force using a force transducer. Human gluteus maximus muscle tissues (ages ranging from 25 to 80 years) were used to investigate expression levels of the conserved miRNAs in the Dlk1-Dio3 cluster. RESULTS: We found that the majority of miRNAs (33 out of 42 tested) in the cluster induced anti-atrophic phenotypes in fully differentiated myotubes with increasing their diameters. Eighteen of these miRNAs, eight of which are conserved in humans, harboured predicted binding sites in the 3' UTR of muscle atrophy gene-1 (Atrogin-1) encoding a muscle-specific E3 ligase. Direct interactions were identified between these miRNAs and the 3' UTR of Atrogin-1, leading to repression of Atrogin-1 and thereby induction of eIF3f protein content, in both human and mouse skeletal muscle cells. Intramuscular delivery of AAV9 expressing miR-376c-3p, one of the most effective miRNAs in myotube thickening, dramatically ameliorated skeletal muscle atrophy and improved muscle function, including isometric force, twitch force, and fatigue resistance in old mice. Consistent with our findings in mice, the expression of miRNAs in the cluster was significantly down-regulated in human muscle from individuals > 50 years old. CONCLUSIONS: Our study suggests that genetic intervention using a muscle-directed miRNA delivery system has therapeutic efficacy in preventing Atrogin-1-mediated muscle atrophy in sarcopenia.


Subject(s)
MicroRNAs , Animals , Calcium-Binding Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins , Iodide Peroxidase , Membrane Proteins , Mice , MicroRNAs/genetics , Muscle Fibers, Skeletal , Muscular Atrophy/genetics , Muscular Atrophy/therapy
3.
Ann Geriatr Med Res ; 23(3): 98-104, 2019 Sep.
Article in English | MEDLINE | ID: mdl-32743297

ABSTRACT

Sarcopenia, the loss of skeletal muscle mass and function with age, was first recognized as a disease in the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) (M62.84) and has recently attracted attention as aged populations increase. However, the diagnostic criteria for sarcopenia remain controversial and there are as yet no US Food and Drug Administration-approved medications for sarcopenia. Given that both intrinsic and extrinsic factors contribute to sarcopenia onset and development, understanding the mechanism of sarcopenia is important for the development of therapeutic strategies. In this review, we described a variety of drugs for sarcopenia under investigation, including myostatin/ActR2 signaling inhibitors, exercise mimetics, anabolic hormones, and natural compounds. However, the combination of non-drug therapies with exercise and nutritional supplements are also needed as more easily accessible intervention strategies against sarcopenia rather than pharmacological treatments alone. Many approaches to develop therapeutic methods to overcome sarcopenia may lead to healthy aging.

4.
Sci Rep ; 8(1): 8574, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29872072

ABSTRACT

Sarcopenia is a gradual loss of skeletal muscle mass and function with aging. Given that sarcopenia has been recognized as a disease entity, effective molecular biomarkers for early diagnosis are required. We recruited 46 normal subjects and 50 patients with moderate sarcopenia aged 60 years and older. Sarcopenia was clinically identified on the basis of the appendicular skeletal muscle index by applying cutoff values derived from the Asian Working Group for Sarcopenia. The serum levels of 21 potential biomarkers were analyzed and statistically examined. Interleukin 6, secreted protein acidic and rich in cysteine, macrophage migration inhibitory factor, and insulin-like growth factor 1 levels differed significantly between the normal and sarcopenia groups. However, in each case, the area under the receiver operating characteristics curve (AUC) was <0.7. Subsequent combination of the measurements of these biomarkers into a single risk score based on logistic regression coefficients enhanced the accuracy of diagnosis, yielding an AUC value of 0.763. The best cutoff value of 1.529 had 70.0% sensitivity and 78.3% specificity (95% CI = 2.80-21.69, p < 0.0001). Combined use of the selected biomarkers provides higher diagnostic accuracy than individual biomarkers, and may be effectively utilized for early diagnosis and prognosis of sarcopenia.


Subject(s)
Biomarkers/blood , Early Diagnosis , Sarcopenia/blood , Sarcopenia/diagnosis , Aged , Aged, 80 and over , Female , Humans , Insulin-Like Growth Factor I/metabolism , Interleukin-6/blood , Logistic Models , Macrophage Migration-Inhibitory Factors/blood , Male , Osteonectin/blood , Sensitivity and Specificity
5.
Child Abuse Negl ; 77: 75-84, 2018 03.
Article in English | MEDLINE | ID: mdl-29306184

ABSTRACT

The purpose of this study was to investigate the importance of the relationships with parents, peers, and teachers as a cause of adolescents' smartphone addiction, and to examine the effect of parental neglect on smartphone addiction and the mediating effect of relational maladjustment in school, especially focusing on the relational maladjustment with peers and teachers. For this purpose, a survey was conducted of students from middle schools and high schools in four regions of South Korea. A total of 1170 middle-school students who reported using smartphone took part in this study. A multiple mediator model was analyzed using the bootstrapping mediation methods Parental neglect was significantly associated with adolescents' smartphone addiction. Furthermore, in the relationship between parental neglect and smartphone addiction, parental neglect was not significantly associated with the relational maladjustment with peers, whereas the relational maladjustment with peers negatively influenced smartphone addiction. On the other hand, the relational maladjustment with teachers had a partial mediation effect between parental neglect and smartphone addiction. Based on the results of this study, some implications are suggested that include the need for (1) a customized program for adolescents who use smartphones addictively, (2) a family therapy program to strengthen family function, (3) an integrated case-management system to prevent the reoccurrence of parental neglect, (4) a program to improve relationships with teachers, and (5) expanding the leisure activity infrastructure to improve relationships with friends off-line.


Subject(s)
Adolescent Behavior/psychology , Behavior, Addictive , Child Abuse , Interpersonal Relations , Smartphone , Adolescent , Educational Personnel , Family Therapy , Female , Friends , Humans , Male , Parents , Republic of Korea , Surveys and Questionnaires
6.
Mol Cells ; 38(3): 229-35, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25600149

ABSTRACT

Nicotinamide (NAM) has been shown to suppress reactive oxygen species (ROS) production in primary human fibroblasts, thereby extending their replicative lifespan when added to the medium during long-term cultivation. Based on this finding, NAM is hypothesized to affect cellular senescence progression by keeping ROS accumulation low. In the current study, we asked whether NAM is indeed able to reduce ROS levels and senescence phenotypes in cells undergoing senescence progression and those already in senescence. We employed two different cellular models: MCF-7 cells undergoing senescence progression and human fibroblasts in a state of replicative senescence. In both models, NAM treatment substantially decreased ROS levels. In addition, NAM attenuated the expression of the assessed senescence phenotypes, excluding irreversible growth arrest. N-acetyl cysteine, a potent ROS scavenger, did not have comparable effects in the tested cell types. These data show that NAM has potent antioxidative as well as anti-senescent effects. Moreover, these findings suggest that NAM can reduce cellular deterioration caused by oxidative damage in postmitotic cells in vivo.


Subject(s)
Antioxidants/pharmacology , Cellular Senescence/drug effects , Fibroblasts/physiology , Niacinamide/pharmacology , Cell Cycle Checkpoints , Fibroblasts/drug effects , Humans , Infant, Newborn , MCF-7 Cells , Male , Oxidative Stress , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...