Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
JBMR Plus ; 8(8): ziae080, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989259

ABSTRACT

Bone is a dynamic mineralized tissue that undergoes continuous turnover throughout life. While the general mechanism of bone mineral metabolism is documented, the role of underlying collagen structures in regulating osteoblastic mineral deposition and osteoclastic mineral resorption remains an active research area, partly due to the lack of biomaterial platforms supporting accurate and analytical investigation. The recently introduced osteoid-inspired demineralized bone paper (DBP), prepared by 20-µm thin sectioning of demineralized bovine compact bone, holds promise in addressing this challenge as it preserves the intrinsic bony collagen structure and retains semi-transparency. Here, we report on the impact of collagen structures on modulating osteoblast and osteoclast-driven bone mineral metabolism using vertical and transversal DBPs that exhibit a uniaxially aligned and a concentric ring collagen structure, respectively. Translucent DBP reveals these collagen structures and facilitates longitudinal tracking of mineral deposition and resorption under brightfield microscopy for at least 3 wk. Genetically labeled primary osteogenic cells allow fluorescent monitoring of these cellular processes. Osteoblasts adhere and proliferate following the underlying collagen structures of DBPs. Osteoblastic mineral deposition is significantly higher in vertical DBP than in transversal DBP. Spatiotemporal analysis reveals notably more osteoblast adhesion and faster mineral deposition in vascular regions than in bone regions. Subsequent osteoclastic resorption follows these mineralized collagen structures, directing distinct trench and pit-type resorption patterns. In vertical DBP, trench-type resorption occurs at an 80% frequency, whereas transversal DBP shows 35% trench-type and 65% pit-type resorption. Our studies substantiate the importance of collagen structures in regulating mineral metabolism by osteogenic cells. DBP is expected to serve as an enabling biomaterial platform for studying various aspects of cellular and extracellular bone remodeling biology.

2.
Cancers (Basel) ; 15(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37345073

ABSTRACT

Chemoresistance is a significant problem in the effective treatment of bone metastasis. Adipocytes are a major stromal cell type in the bone marrow and may play a crucial role in developing microenvironment-driven chemoresistance. However, detailed investigation remains challenging due to the anatomical inaccessibility and intrinsic tissue complexity of the bone marrow microenvironment. In this study, we developed 2D and 3D in vitro models of bone marrow adipocytes to examine the mechanisms underlying adipocyte-induced chemoresistance. We first established a protocol for the rapid and robust differentiation of human bone marrow stromal cells (hBMSCs) into mature adipocytes in 2D tissue culture plastic using rosiglitazone (10 µM), a PPARγ agonist. Next, we created a 3D adipocyte culture model by inducing aggregation of hBMSCs and adipogenesis to create adipocyte spheroids in porous hydrogel scaffolds that mimic bone marrow sinusoids. Simulated chemotherapy treatment with doxorubicin (2.5 µM) demonstrated that mature adipocytes sequester doxorubicin in lipid droplets, resulting in reduced cytotoxicity. Lastly, we performed direct coculture of human multiple myeloma cells (MM1.S) with the established 3D adipocyte model in the presence of doxorubicin. This resulted in significantly accelerated multiple myeloma proliferation following doxorubicin treatment. Our findings suggest that the sequestration of hydrophobic chemotherapeutics by mature adipocytes represents a potent mechanism of bone marrow microenvironment-driven chemoresistance.

3.
Sci Adv ; 7(4)2021 01.
Article in English | MEDLINE | ID: mdl-33523925

ABSTRACT

Trabecular bone maintains physiological homeostasis and consistent structure and mass through repeated cycles of bone remodeling by means of tightly localized regulation. The molecular and cellular processes that regulate localized bone remodeling are poorly understood because of a lack of relevant experimental models. A tissue-engineered model is described here that reproduces bone tissue complexity and bone remodeling processes with high fidelity and control. An osteoid-inspired biomaterial-demineralized bone paper-directs osteoblasts to deposit structural mineralized bone tissue and subsequently acquire the resting-state bone lining cell phenotype. These cells activate and shift their secretory profile to induce osteoclastogenesis in response to chemical stimulation. Quantitative spatial mapping of cellular activities in resting and activated bone surface coculture showed that the resting-state bone lining cell network actively directs localized bone remodeling by means of paracrine signaling and cell-to-cell contact. This model may facilitate further investigation of trabecular bone niche biology.


Subject(s)
Cancellous Bone , Organoids , Bone Remodeling , Bone and Bones , Osteoblasts
4.
Tissue Eng Part C Methods ; 26(3): 143-155, 2020 03.
Article in English | MEDLINE | ID: mdl-32031058

ABSTRACT

Inverted colloidal crystal (ICC) hydrogel scaffolds have emerged as a new class of three-dimensional cell culture matrix that represents a unique opportunity to reproduce lymphoid tissue microenvironments. ICC geometry promotes the formation of stromal cell networks and their interaction with hematopoietic cells, a core cellular process in lymphoid tissues. When subdermally implanted, ICC hydrogel scaffolds direct unique foreign body responses to form a vascularized stromal tissue with prolonged attraction of hematopoietic cells, which together resemble lymphoid tissue microenvironments. While conceptually simple, fabrication of ICC hydrogel scaffold requires multiple steps and laborious handling of delicate materials. Here, we introduce a facile route for ICC hydrogel scaffold fabrication using expanded polystyrene (EPS) beads. EPS beads shrink and fuse in a tunable manner under pressurized thermal conditions, which serves as colloidal crystal templates for ICC scaffold fabrication. Inclusion of collagen in the precursor solution greatly simplified preparation of bioactive hydrogel scaffolds. The resultant EPS-templated bioactive ICC hydrogel scaffolds demonstrate characteristic features required for lymphoid tissue modeling in both in vitro and in vivo settings. We envision that the presented method will facilitate widespread implementation of ICC hydrogel scaffolds for lymphoid tissue engineering and other emerging applications. Impact statement Inverted colloidal crystal (ICC) hydrogel scaffolds have emerged as a new class of three-dimensional cell culture matrix that represents a unique opportunity for lymphoid tissue modeling and other emerging novel bioengineering applications. While conceptually simple, fabrication of the ICC hydrogel scaffold requires multiple steps and laborious handling of delicate materials with highly toxic chemicals. The presented method for ICC hydrogel scaffold fabrication using expanded polystyrene (EPS) beads is simple, cost-effective, and involves less toxic chemicals than conventional methods, while retaining comparable biological significance. We envision that EPS bead-based hydrogel scaffold fabrication will greatly facilitate the widespread implementation of ICC hydrogel scaffolds and their practical applications.


Subject(s)
Biocompatible Materials/chemistry , Colloids/chemistry , Microspheres , Polystyrenes/chemistry , Tissue Scaffolds/chemistry , Animals , Cellular Microenvironment , Collagen Type I/chemistry , Crystallization , Hydrogels/chemistry , Lymphoid Tissue/cytology , Rats
5.
Adv Healthc Mater ; 9(6): e1901556, 2020 03.
Article in English | MEDLINE | ID: mdl-32017462

ABSTRACT

Inverted colloidal crystal (ICC) hydrogel scaffolds represent unique opportunities in modeling lymphoid tissues and expanding hematopoietic-lymphoid cells. Fully interconnected spherical pore arrays direct the formation of stromal networks and facilitate interactions between stroma and hematopoietic-lymphoid cells. However, due to the intricate architecture of these materials, release of expanded cells is restricted and requires mechanical disruption or chemical dissolution of the hydrogel scaffold. One potent biomaterials strategy to release pore-entrapped hematopoietic-lymphoid cells without breaking the scaffolds apart is to transiently increase the dimensions of these materials using stimuli-responsive polymers. Having this mindset, thermoresponsive ICC scaffolds that undergo rapid (<1 min) and substantial (>300%) diameter change over a physiological temperature range (4-37 °C) by using poly(N-isopropylacrylamide) (PNIPAM) with nanogel crosslinkers is developed. For a proof-of-concept study, the stromal niche by creating osteospheroids, aggregates of osteoblasts, and bone chips is first replicated, and subsequently Nalm-6 model hematopoietic-lymphoid cells are introduced. A sixfold increase in cell count is harvested when ICC hydrogel scaffolds are expanded without termination of the established 3D stromal cell culture. It is envisioned that thermoresponsive ICC hydrogel scaffolds will enable for scalable and sustainable ex vivo expansion of hematopoietic-lymphoid cells.


Subject(s)
Hydrogels , Tissue Engineering , Cell Count , Hydrogel, Polyethylene Glycol Dimethacrylate , Lymphoid Tissue , Tissue Scaffolds
6.
ACS Appl Bio Mater ; 3(5): 2897-2909, 2020 May 18.
Article in English | MEDLINE | ID: mdl-34322659

ABSTRACT

Dysfunction of the intestinal mucus barrier causes disorders such as ulcerative colitis and Crohn's disease. The function of this essential barrier may be affected by the periodically changing luminal environment. We hypothesized that the pH and ion concentration in mucus control its porosity, molecular permeability, and the penetration of microbes. To test this hypothesis, we developed a scalable method to extract porcine small intestinal mucus (PSIM). The aggregation and porosity of PSIM were determined using rheometry, spectrophotometry, and microscopy. Aggregation of PSIM at low pH increased both the elastic (G') and viscous (G″) moduli, and it slowed the transmigration of pathogenic Salmonella. Molecular transport was dependent on ion concentration. At moderate concentrations, many microscopic aggregates (2-5 µm in diameter) impeded diffusion. At higher concentrations, PSIM formed aggregate islands, increasing both porosity and diffusion. This in vitro model could lead to a better understanding of mucus barrier functions and improve the treatment of intestinal diseases.

7.
Nat Biomed Eng ; 2(12): 915-929, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30906645

ABSTRACT

Cancer survivors often carry disseminated tumour cells (DTCs), yet owing to DTC dormancy they do not relapse from treatment. Understanding how the local microenvironment regulates the transition of DTCs from a quiescent state to active proliferation could suggest new therapeutic strategies to prevent or delay the formation of metastases. Here, we show that implantable biomaterial microenvironments incorporating human stromal cells, immune cells and cancer cells can be used to examine the post-dissemination phase of the evolution of the tumour microenvironment. After subdermal implantation in mice, porous hydrogel scaffolds seeded with human bone marrow stromal cells form a vascularized niche and recruit human circulating tumour cells released from an orthotopic prostate tumour xenograft. Systemic injection of human peripheral blood mononuclear cells slowed the evolution of the active metastatic niches but did not change the rate of overt metastases, as the ensuing inflammation promoted the formation of DTC colonies. Implantable pre-metastatic niches might enable the study of DTC colonization and proliferation, and facilitate the development of effective anti-metastatic therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...