Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 18(36): 6907-6915, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36047286

ABSTRACT

A rapidly self-healable polymer is highly desirable but challenging to achieve. Herein, we developed an elastomeric film with instant self-healing ability within 10 s at room temperature. For this purpose, a series of copolymers of poly(glycidyl methacrylate-co-2-hydroxyethyl acrylate) (poly(GMA-co-HEA), or pGH) were synthesized in the vapor phase via an initiated chemical vapor deposition (iCVD) process. The elastomer includes a large amount of hydroxyl groups in the 2-hydroxyethyl acrylate (HEA) moiety capable of forming rapid, reversible hydrogen bonding at room temperature, while glycidyl methacrylate (GMA) with a rigid methacrylic backbone chain in the copolymer provides mechanical robustness to the elastic copolymer. With the optimized copolymer composition, pGH indeed showed instant recovery of the toughness within a minute; a completely divided specimen could be welded within a minute at room temperature and under ambient conditions simply by placing the pieces in close contact, which showed the outstanding recovery performance of elastic modulus (93.2%) and toughness (15.6 MJ m-3). The rapid toughness recovery without supplementing any external energy or reagents (e.g. light, temperature, or catalyst) at room temperature and under ambient conditions will be useful in future wearable electronics and soft robotics applications.

2.
ACS Appl Mater Interfaces ; 10(38): 32668-32677, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30175915

ABSTRACT

A new fabrication method for an ultrathin (500 nm thick) pressure-sensitive adhesive (PSA) was demonstrated by utilizing a series of in situ cross-linked viscoelastic copolymer films. Viscoelastic films composed of poly(2-hydroxyethyl acrylate- co-2-ethylhexyl acrylate) were synthesized successfully in a one-step manner by an initiated chemical vapor deposition (iCVD) process, where free-radical polymerization is triggered in the vapor phase either by heat or UV, or a combination of both. In particular, the photoinitiated chemical vapor deposition method generated a highly cross-linked polymer film, whereas cross-linking of the copolymer film was suppressed greatly in the conventional thermal iCVD method. A combination of thermal and photoinitiated chemical vapor deposition could regulate the cross-linking density of the copolymer films. We controlled the cross-linking density of the copolymer films to exhibit a viscoelastic property so that they would readily adhere to various kinds of substrates with only 500 nm thick copolymer PSA. The adhesion performance of the PSA was systematically optimized by tuning the copolymer composition as well as the cross-linking density, and consequently a high shear strength of more than 85.2 ± 5 N/cm2 was achieved despite the 500 nm thickness. In addition, the PSA was completely transparent. We expect that the ultrathin PSAs developed in this work will be utilized widely for the realization of various soft electronic devices, which usually require strong adhesion, tunable viscoelastic properties, and optical transparency.

3.
ACS Appl Mater Interfaces ; 9(46): 40868-40877, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29090899

ABSTRACT

Demand of adhesives that are strong but ultrathin with high flexibility, optical transparency, and long-term stability has been rapidly growing recently. Here, we suggest a thermally curable, "sticky" nanoadhesive with outstanding adhesion strength accomplished by single-side deposition of the nanoadhesive on arbitrary substrates. The sticky nanoadhesive is composed of an ionic copolymer film generated from two acrylate monomers with tertiary amine and alkyl halide functionalities, formed by a solvent-free method, initiated chemical vapor deposition (iCVD). Because of the low glass transition temperature (Tg) of the copolymer (-9 °C), the ionic copolymer shows a viscoelastic behavior that makes the adhesive attachable to various substrates, regardless of the substrate materials. Moreover, the copolymer film is thermally curable via a cross-linking reaction between the alkyl halide and tertiary amine functionalities, which substantially increased the adhesion strength of the 500 nm thick nanoadhesive greater than 25 N/25 mm within 5 min of curing at 120 °C. The adhesive thickness can further be reduced to 50 nm to achieve greater than 35 N/25 mm within 30 min at 120 °C. The nanoadhesive layer can form uniform adhesion in a large area substrate (up to 130 × 100 mm2) with the deposition of the adhesive only on one side of the substrates to be laminated. Because of its ultrathin nature, the nanoadhesive is also optically transparent as well as highly flexible, which will play a critical role in fabrication and the lamination of future flexible/wearable devices.

4.
J Am Chem Soc ; 139(6): 2329-2337, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28118008

ABSTRACT

In spite of the huge research interest, ionic polymers could not have been synthesized in the vapor phase because the monomers of ionic polymers contain nonvolatile ionic salts, preventing the monomers from vaporization. Here, we suggest a new, one-step synthetic pathway to form a series of cross-linked ionic polymers (CIPs) in the vapor phase via initiated chemical vapor deposition (iCVD). 2-(Dimethylamino)ethyl methacrylate (DMAEMA) and 4-vinylbenzyl chloride (VBC) monomers are introduced into the iCVD reactor in the vapor phase to form a copolymer film. Simultaneously in the course of the deposition process, the tertiary amine in DMAEMA and benzylic chloride in VBC undergo a Menshutkin nucleophilic substitution reaction to form an ionic ammonium-chloride complex, forming a highly cross-linked ionic copolymer film of p(DMAEMA-co-VBC). To the best of our knowledge, this is the first report on the synthesis of CIP films in the vapor phase. The newly developed CIP thin film is further applied to the surface modification of the membrane for oil/water separation. With the hydrophilic and underwater oleophobic membrane whose surface is modified with the CIP film, excellent separation efficiency (>99%) and unprecedentedly high permeation flux (average 2.32 × 105 L m-2 h-1) are achieved.

5.
Sci Rep ; 6: 29993, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27435167

ABSTRACT

A robust superamphiphobic sponge (SA-sponge) is proposed by using a single initiated chemical vapor deposition (i-CVD) process. Poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PFDMA) is deposited on a commercial sponge by the polymerization of fluoroalkyl acrylates during the i-CVD process. This PFDMA is conformally coated onto both the exterior and interior of the sponge structure by a single step of the i-CVD process at nearly room temperature. Due to the inherent porous structure of the sponge and the hydrophobic property of the fluorine-based PFDMA, the demonstrated SA-sponge shows not only superhydrophobicity but also superoleophobicity. Furthermore, the fabricated SA-sponge is robust with regard to physical and chemical damage. The fabricated SA-sponge can be utilized for multi-purpose applications such as gas-permeable liquid separators.

6.
ACS Appl Mater Interfaces ; 8(1): 600-8, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26652192

ABSTRACT

For the efficient separation of lipid extracted from microalgae cells, a novel membrane was devised by introducing a functional polymer coating onto a membrane surface by means of an initiated chemical vapor deposition (iCVD) process. To this end, a steel-use-stainless (SUS) membrane was modified in a way that its surface energy was systemically modified. The surface modification by conformal coating of functional polymer film allowed for selective separation of oil-water mixture, by harnessing the tuned interfacial energy between each liquid phase and the membrane surface. The surface-modified membrane, when used with chloroform-based solvent, exhibited superb permeate flux, breakthrough pressure, and also separation yield: it allowed separation of 95.5 ± 1.2% of converted lipid (FAME) in the chloroform phase from the water/MeOH phase with microalgal debris. This result clearly supported that the membrane-based lipid separation is indeed facilitated by way of membrane being functionalized, enabling us to simplify the whole downstream process of microalgae-derived biodiesel production.


Subject(s)
Biomass , Biotechnology/instrumentation , Biotechnology/methods , Cost-Benefit Analysis , Lipids/isolation & purification , Membranes, Artificial , Microalgae/chemistry , Chloroform/chemistry , Esters/chemistry , Imaging, Three-Dimensional , Methacrylates/chemistry , Methanol/chemistry , Olive Oil/isolation & purification , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , Stainless Steel/chemistry , Surface Properties , Thermodynamics , Water/chemistry , Wettability
7.
Soft Matter ; 11(24): 4952-61, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-26008176

ABSTRACT

The three-dimensional (3D) clustering of Janus cylinders is controlled by simply tuning the cylinder geometry and hydrophobic interactions. Janus cylinders were prepared by combining two approaches: micromolding and initiated chemical vapor deposition (iCVD). Hydrophilic cylinders with a flat- or convex-top curvature were prepared by micromolding based on surface tension-induced flow. The iCVD process then provides a hydrophobic domain through the simple and precise deposition of a polymer film on the top surface, forming monodisperse Janus microcylinders. We use these Janus cylinders as building blocks to form 2D or 3D clusters via hydrophobic interactions in methanol. We investigate how cylinder geometry or degree of hydrophobic interaction affects the resulting cluster geometries. The convex-top Janus cylinders lead to 3D clustering through tip-to-tip interactions, and the flat-top Janus cylinders lead to 2D clustering through face-to-face attraction. The number of Janus cylinders in 3D clusters is tuned by controlling the degree of hydrophobic (or hydrophilic) interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...