Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Small ; : e2306919, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063836

ABSTRACT

Rechargeable aqueous zinc-ion batteries (ZIBs) have emerged as an alternative to lithium-ion batteries due to their affordability and high level of safety. However, their commercialization is hindered by the low mass loading and irreversible structural changes of the cathode materials during cycling. Here, a disordered phase of a manganese nickel cobalt dioxide cathode material derived from wastewater via a coprecipitation process is reported. When used as the cathode for aqueous ZIBs , the developed electrode delivers 98% capacity retention at a current density of 0.1 A g-1 and 72% capacity retention at 1 A g-1 while maintaining high mass loading (15 mg cm-2 ). The high performance is attributed to the structural stability of the Co and Ni codoped phase; the dopants effectively suppress Jahn-Teller distortion of the manganese dioxide during cycling, as revealed by operando X-ray absorption spectroscopy. Also, it is found that the Co and Ni co-doped phase effectively inhibits the dissolution of Mn2+ , resulting in enhanced durability without capacity decay at first 20 cycles. Further, it is found that the performance of the electrode is sensitive to the ratio of Ni to Co, providing important insight into rational design of more efficient cathode materials for low-cost, sustainable, rechargeable aqueous ZIBs.

2.
Adv Sci (Weinh) ; 10(34): e2304915, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37870210

ABSTRACT

Aqueous zinc metal batteries (AZMBs) are emerging energy storage systems that are poised to replace conventional lithium-ion batteries owing to their intrinsic safety, facile manufacturing process, economic benefits, and superior ionic conductivity. However, the issues of inferior anode reversibility and dendritic plating during operation remain challenging for the practical use of AZMBs. Herein, a gel electrolyte based on zwitterionic poly(sulfobetaine methacrylate) (poly(SBMA)) dissolved with different concentrations of ZnSO4 is proposed. Two-dimensional correlation spectroscopy based on Raman analysis reveals an enhanced interaction priority between the polar groups in SBMA and the dissolved ions as electrolyte concentration increases, which establishes a robust interaction and renders homogeneous ion distribution. Attributable to the modified coordination, zwitterionic gel polymer electrolyte with 5 mol kg-1 of ZnSO4 (ZGPE-5) facilitates stable zinc deposition and improves anode reversibility. By taking advantage of preferential coordination, a symmetrical cell evaluation employing ZGPE-5 demonstrates a cycle life over 3600 h, where ZGPE-5 also exerts a beneficial effect on the full cell cycling when assembled with Zn0.25 V2 O5 cathode. This study elucidates changes in the internal ion behavior that are dependent on electrolyte concentrations and pave the way for durable AZMBs.

3.
Small ; 19(29): e2300551, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37052488

ABSTRACT

Carbon-based electrocatalysts with both high activity and high stability are desirable for use in Zn-air batteries. However, the carbon corrosion reaction (CCR) is a critical obstacle in rechargeable Zn-air batteries. In this study, a cost-effective carbon-based novel material is reported with a high catalytic effect and good durability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), prepared via a simple graphitization process. In situ growth of graphene is utilized in a 3D-metal-coordinated hydrogel by introducing a catalytic lattice of transition metal alloys. Due to the direct growth of few-layer graphene on the metal alloy decorated 3d-carbon network, greatly reduced CCR is observed in a repetitive OER test. As a result, an efficient bifunctional electrocatalytic performance is achieved with a low ΔE value of 0.63 V and good electrochemical durability for 83 h at a current density of 10 mA cm-2 in an alkaline media. Moreover, graphene-encapsulated transition metal alloys on the nitrogen-doped carbon supporter exhibit an excellent catalytic effect and good durability in a Zn-air battery system. This study suggests a straightforward way to overcome the CCR of carbon-based materials for an electrochemical catalyst with wide application in energy conversion and energy storage devices.

4.
Article in English | MEDLINE | ID: mdl-36749965

ABSTRACT

The use of oxygen evolution co-catalysts (OECs) with hematite photoanodes has received much attention because of the potential to reduce surface charge recombination. However, the low surface charge transfer and bulk charge separation rate of hematite are not improved by decorating with OECs, and the intrinsic drawbacks of hematite still limit efficient photoelectrochemical (PEC) water splitting. Here, we successfully overcame the sluggish oxygen evolution reaction performance of hematite for water splitting by inserting zero-dimensional (0D) nanofragmented MXene (NFMX) as a hole transport material between the hematite and the OEC. The 0D NFMX was fabricated from two-dimensional (2D) MXene sheets and deposited onto the surface of a three-dimensional (3D) hematite photoanode via a centrifuge-assisted method without altering the inherent performance of the 2D MXene sheets. Among many OECs, NiFe(OH)x was selected as the OEC to improve hematite PEC performance in our system because of its efficient charge transport behavior and high stability. Because of the great synergy between NFMX and NiFe(OH)x, NiFe(OH)x/NFMX/Fe2O3 achieved a maximum photocurrent density of 3.09 mA cm-2 at 1.23 VRHE, which is 2.78-fold higher than that of α-Fe2O3 (1.11 mA cm-2). Furthermore, the poor stability of MXene in an aqueous solution for water splitting was resolved by uniformly coating it with NiFe(OH)x, after which it showed outstanding stability for 60 h at 1.23 VRHE. This study demonstrates the successful use of NFMX as a hole transport material combined with an OEC for highly efficient water splitting.

5.
ACS Appl Mater Interfaces ; 14(1): 492-501, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34932302

ABSTRACT

High-energy density lithium-oxygen batteries (LOBs) seriously suffer from poor rate capability and cyclability due to the slow oxygen-related electrochemistry and uncontrollable formation of lithium peroxide (Li2O2) as an insoluble discharge product. In this work, we accommodated the discharge product in macro-scale voids of a carbon-framed architecture with meso-dimensional channels on the carbon frame and open holes connecting the neighboring voids. More importantly, we found that a specific dimension of the voids guaranteed high capacity and cycling durability of LOBs. The best LOB performances were achieved by employing the carbon-framed architecture having voids of 0.8 µm size as the cathode of the LOB when compared with the cathodes having voids of 0.3 and 1.4 µm size. The optimized void size of 0.8 µm allowed only a monolithic integrity of lithium peroxide deposit within a void during discharging. The deposit was grown to be a yarn ball-looking sphere exactly fitting the shape and size of the void. The good electric contact allowed the discharge product to be completely decomposed during charging. On the other hand, the void space was not fully utilized due to the mass transfer pathway blockage at the sub-optimized 0.3 µm and the formation of multiple deposit integrities within a void at the sur-optimized 1.4 µm. Consequently, the critical void dimension at 0.8 µm was superior to other dimensions in terms of the void space utilization efficiency and the lithium peroxide decomposition efficiency, disallowing empty space and side reactions during discharging.

6.
ACS Appl Mater Interfaces ; 14(1): 750-760, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34935345

ABSTRACT

The ability to realize a highly capacitive/conductive electrode is an essential factor in large-scale devices, requiring a high-power/energy density system. Germanium is a feasible candidate as an anode material of lithium-ion batteries to meet the demands. However, the application is constrained due to low charge conductivity and large volume change on cycles. Here, we design a hybrid conductive shell of multi-component titanium oxide on a germanium microstructure. The shell enables facile hybrid ionic/electronic conductivity for swift charge mobility in the germanium anode, revealed through computational calculation and consecutive measurement of electrochemical impedance spectroscopy. Furthermore, a well-constructed electrode features a high initial Coulombic efficiency (90.6%) and stable cycle life for 800 cycles (capacity retention of 90.4%) for a fast-charging system. The stress-resilient properties of dense microparticle facilitate to alleviate structural failure toward high volumetric (up to 1737 W h L-1) and power density (767 W h L-1 at 7280 W L-1) of full cells, paired with highly loaded NCM811 in practical application.

7.
ACS Appl Mater Interfaces ; 13(46): 54906-54915, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34751554

ABSTRACT

The photoelectrochemical performance of a co-doped hematite photoanode might be hindered due to the unintentionally diffused Sn from a fluorine-doped tin oxide (FTO) substrate during the high-temperature annealing process by providing an increased number of recombination centers and structural disorder. We employed a two-step annealing process to manipulate the Sn concentration in co-doped hematite. The Sn content [Sn/(Sn + Fe)] of a two-step annealing sample decreased to 1.8 from 6.9% of a one-step annealing sample. Si and Sn co-doped hematite with the reduced Sn content exhibited less structural disorder and improved charge transport ability to achieve a 3.0 mA cm-2 photocurrent density at 1.23 VRHE, which was 1.3-fold higher than that of the reference Si and Sn co-doped Fe2O3 (2.3 mA cm-2). By decorating with the efficient co-catalyst NiFe(OH)x, a maximum photocurrent density of 3.57 mA cm-2 was achieved. We further confirmed that the high charging potential and poor cyclability of the zinc-air battery could be dramatically improved by assembling the optimized, stable, and low-cost hematite photocatalyst with excellent OER performance as a substitute for expensive Ir/C in the solar-assisted chargeable battery. This study demonstrates the significance of manipulating the unintentionally diffused Sn content diffused from FTO to maximize the OER performance of the co-doped hematite.

9.
Adv Mater ; 33(34): e2101726, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34288151

ABSTRACT

Despite their safety, nontoxicity, and cost-effectiveness, zinc aqueous batteries still suffer from limited rechargeability and poor cycle life, largely due to spontaneous surface corrosion and formation of large Zn dendrites by irregular and uneven plating and stripping. In this work, these untoward effects are minimized by covering Zn electrodes with ultrathin layers of covalent organic frameworks, COFs. These nanoporous and mechanically flexible films form by self-assembly-via the straightforward and scalable dip-coating technique-and permit efficient mass and charge transport while suppressing surface corrosion and growth of large Zn dendrites. The batteries demonstrated have excellent capacity retention and stable polarization voltage for over 420 h of cycling at 1 mA cm-2 . The COF films essential for these improvements can be readily deposited over large areas and curvilinear supports, enabling, for example, foldable wire-type batteries.

10.
Nat Commun ; 12(1): 4309, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34262036

ABSTRACT

To boost the photoelectrochemical water oxidation performance of hematite photoanodes, high temperature annealing has been widely applied to enhance crystallinity, to improve the interface between the hematite-substrate interface, and to introduce tin-dopants from the substrate. However, when using additional dopants, the interaction between the unintentional tin and intentional dopant is poorly understood. Here, using germanium, we investigate how tin diffusion affects overall photoelectrochemical performance in germanium:tin co-doped systems. After revealing that germanium is a better dopant than tin, we develop a facile germanium-doping method which suppresses tin diffusion from the fluorine doped tin oxide substrate, significantly improving hematite performance. The NiFeOx@Ge-PH photoanode shows a photocurrent density of 4.6 mA cm-2 at 1.23 VRHE with a low turn-on voltage. After combining with a perovskite solar cell, our tandem system achieves 4.8% solar-to-hydrogen conversion efficiency (3.9 mA cm-2 in NiFeOx@Ge-PH/perovskite solar water splitting system). Our work provides important insights on a promising diagnostic tool for future co-doping system design.

11.
ACS Nano ; 15(7): 11655-11666, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34196523

ABSTRACT

An efficient reduction method to obtain high-quality graphene sheets from mass-producible graphene oxide is highly desirable for practical applications. Here, we report an in situ deoxidation and graphitization mechanism for graphene oxide that allows for high-quality reduced graphene oxide sheets under the low temperature condition (<300 °C) by utilizing a well-known Fischer-Tropsch reaction catalyst (CuFeO2). By applying modified FTR conditions, where graphene oxide was reduced on the catalyst surface under the hydrogen-poor condition, deoxidation with much suppressed carbon loss was possible, resulting in high-quality graphene sheets. Our experimental data and density functional theory calculations proved that reduction which occurred on the CuFeO2 surface preferentially removed adsorbed oxygen atoms in graphene oxide sheets, leaving dissociated carbon structures to be restored to a near-perfect few-layer graphene sheet. TGA-mass data revealed that GO with catalysts released 92.8% less carbon-containing gases than GO without catalysts during the reduction process, which suggests that this process suppressed carbon loss in graphene oxide sheets, leading to near-perfect graphene. The amount of oxygen related to the epoxide group in the basal plane of GO significantly decreased to near zero (from 43.84 to 0.48 at. %) in catalyst-assisted reduced graphene oxide (CA-rGO). The average domain size and the density of defects of CA-rGO were 4 times larger and 0.1 times lower than those for thermally reduced graphene oxide (TrGO), respectively. As a result, CA-rGO had a 246 and 8 times lower electrical resistance than TrGO and CVD-graphene. With these performances, CA-rGO coated paper connected to a coin-cell battery successfully lit an LED bulb, and CA-rGO itself acted as an efficient catalyst for both the hydrogen evolution reaction and the oxygen evolution reaction.

12.
ACS Appl Mater Interfaces ; 13(23): 26870-26878, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34085807

ABSTRACT

Full advantage of stretchable electronic devices can be taken when utilizing an intrinsically stretchable power source. High-performance stretchable supercapacitors with a simple structure and solid-state operation are good power sources for stretchable electronics. This study suggests a new type of intrinsically stretchable, printable, electroactive ink consisting of 1T-MoS2 and a fluoroelastomer (FE). The active material (1T-MoS2/FE) is made by fluorinating the metallic-phase MoS2 (1T-MoS2) nanosheets with the FE under high-power ultrasonication. The MoS2 in the 1T-MoS2/FE has unconventional crystal structures in which the stable cubic (1T) and distorted 2H structures were mixed. The printed line of the 1T-MoS2/FE on the porous stretchable Au collector electrodes is intrinsically stretchable at more than ε = 50% and has good specific capacitance (28 mF cm-2 at 0.2 mA cm-2) and energy density (3.15 mWh cm-3). The in-plane all-solid-state stretchable supercapacitor is stretchable at ε = 40% and retains its relative capacity (C/Co) by 80%. This printable device platform potentially opens up the in-plane fabrication of stretchable micro-supercapacitor devices for wearable electronic applications.

13.
Angew Chem Int Ed Engl ; 55(34): 9922-6, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27358249

ABSTRACT

This study introduces an in situ fabrication of nanoporous hematite with a Ti-doped SiOx passivation layer for a high-performance water-splitting system. The nanoporous hematite with a Ti-doped SiOx layer (Ti-(SiOx /np-Fe2 O3 )) has a photocurrent density of 2.44 mA cm(-2) at 1.23 VRHE and 3.70 mA cm(-2) at 1.50 VRHE . When a cobalt phosphate co-catalyst was applied to Ti-(SiOx /np-Fe2 O3 ), the photocurrent density reached 3.19 mA cm(-2) at 1.23 VRHE with stability, which shows great potential of the use of the Ti-doped SiOx layer with a synergistic effect of decreased charge recombination, the increased number of active sites, and the reduced hole-diffusion pathway from the hematite to the electrolyte.

SELECTION OF CITATIONS
SEARCH DETAIL
...