Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 4829, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30446659

ABSTRACT

Supported metal nanoparticles hold great promise for many fields, including catalysis and renewable energy. Here we report a novel methodology for the in situ growth of architecturally tailored, regenerative metal nanocatalysts that is applicable to a wide range of materials. The main idea underlying this strategy is to selectively diffuse catalytically active metals along the grain boundaries of host oxides and then to reduce the diffused metallic species to form nanoclusters. As a case study, we choose ceria and zirconia, the most recognized oxide supports, and spontaneously form various metal particles on their surface with controlled size and distribution. Metal atoms move back and forth between the interior (as cations) and the exterior (as clusters) of the host oxide lattice as the reductive and oxidative atmospheres repeat, even at temperatures below 700 °C. Furthermore, they exhibit excellent sintering/coking resistance and reactivity toward chemical/electrochemical reactions, demonstrating potential to be used in various applications.

2.
ACS Appl Mater Interfaces ; 10(7): 6269-6275, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29369610

ABSTRACT

Stabilized Bi2O3 has gained a considerable amount of attention as a solid electrolyte material for low-temperature solid oxide fuel cells due to its superior oxygen-ion conductivity at the temperature of relevance (≤500 °C). Despite many research efforts to measure the transport properties of stabilized Bi2O3, the effects of grain boundaries on the electrical conductivity have rarely been reported and their results are even controversial. Here, we attempt quantitatively to assess the grain boundary contribution out of the total ionic conductivity at elevated temperatures (350-500 °C) by fabricating epitaxial and nano-polycrystalline thin films of yttrium-stabilized Bi2O3. Surprisingly, both epitaxial and polycrystalline films show nearly identical levels of ionic conductivity, as measured by alternating current impedance spectroscopy and this is the case despite the fact that the polyfilm possesses nanosized columnar grains and thus an extremely high density of the grain boundaries. The highly conductive nature of grain boundaries in stabilized Bi2O3 is discussed in terms of the clean and chemically uniform grain boundary without segregates, and the implications for device application are suggested.

SELECTION OF CITATIONS
SEARCH DETAIL
...