Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Extracell Vesicle ; 32024 Jun.
Article in English | MEDLINE | ID: mdl-38939756

ABSTRACT

Extracellular vesicles (EVs) are membrane-bound vesicles released into the extracellular milieu from various cell types including host cells and pathogens that infect them. As carriers of nucleic acids, proteins, lipids, metabolites, and virulence factors, EVs act as delivery vehicles for intercellular communication and quorum sensing. Innate immune cells have the capacity to intercept, internalize, and interpret 'messages' contained within these EVs. This review categorizes the ability of EVs secreted by bacterial, parasitic, and fungal pathogens to trigger both pro- and anti-inflammatory innate immune responses in the host. Understanding molecular pathways and inflammatory responses activated in innate immune cells upon pathogen-derived EV stimulation is critical to gain insight into potential therapeutics and combat these infectious diseases.

2.
Nat Microbiol ; 9(1): 95-107, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168615

ABSTRACT

The host type I interferon (IFN) pathway is a major signature of inflammation induced by the human fungal pathogen, Candida albicans. However, the molecular mechanism for activating this pathway in the host defence against C. albicans remains unknown. Here we reveal that mice lacking cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway components had improved survival following an intravenous challenge by C. albicans. Biofilm-associated C. albicans DNA packaged in extracellular vesicles triggers the cGAS-STING pathway as determined by induction of interferon-stimulated genes, IFNß production, and phosphorylation of IFN regulatory factor 3 and TANK-binding kinase 1. Extracellular vesicle-induced activation of type I IFNs was independent of the Dectin-1/Card9 pathway and did not require toll-like receptor 9. Single nucleotide polymorphisms in cGAS and STING potently altered inflammatory cytokine production in human monocytes challenged by C. albicans. These studies provide insights into the early innate immune response induced by a clinically significant fungal pathogen.


Subject(s)
Candidiasis , Interferon Type I , Animals , Mice , Candida albicans/pathogenicity , CARD Signaling Adaptor Proteins/metabolism , Immunity, Innate , Interferon Type I/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction , Candidiasis/metabolism , Candidiasis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...