Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 30(1): 825-835, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37883272

ABSTRACT

Line-based density plots are used to reduce visual clutter in line charts with a multitude of individual lines. However, these traditional density plots are often perceived ambiguously, which obstructs the user's identification of underlying trends in complex datasets. Thus, we propose a novel image space coloring method for line-based density plots that enhances their interpretability. Our method employs color not only to visually communicate data density but also to highlight similar regions in the plot, allowing users to identify and distinguish trends easily. We achieve this by performing hierarchical clustering based on the lines passing through each region and mapping the identified clusters to the hue circle using circular MDS. Additionally, we propose a heuristic approach to assign each line to the most probable cluster, enabling users to analyze density and individual lines. We motivate our method by conducting a small-scale user study, demonstrating the effectiveness of our method using synthetic and real-world datasets, and providing an interactive online tool for generating colored line-based density plots.

2.
IEEE Trans Vis Comput Graph ; 28(8): 2809-2821, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33400650

ABSTRACT

The recent advance in motion tracking (e.g., Visual Inertial Odometry) allows the use of a mobile phone as a 3D pen, thus significantly benefiting various mobile Augmented Reality (AR) applications based on 3D curve creation. However, when creating 3D curves on and around physical objects with mobile AR, tracking might be less robust or even lost due to camera occlusion or textureless scenes. This motivates us to study how to achieve natural interaction with minimum tracking errors during close interaction between a mobile phone and physical objects. To this end, we contribute an elicitation study on input point and phone grip, and a quantitative study on tracking errors. Based on the results, we present a system for direct 3D drawing with an AR-enabled mobile phone as a 3D pen, and interactive correction of 3D curves with tracking errors in mobile AR. We demonstrate the usefulness and effectiveness of our system for two applications: in-situ 3D drawing, and direct 3D measurement.

3.
IEEE Trans Vis Comput Graph ; 24(5): 1705-1716, 2018 05.
Article in English | MEDLINE | ID: mdl-28436877

ABSTRACT

Most graphics hardware features memory to store textures and vertex data for rendering. However, because of the irreversible trend of increasing complexity of scenes, rendering a scene can easily reach the limit of memory resources. Thus, vertex data are preferably compressed, with a requirement that they can be decompressed during rendering. In this paper, we present a novel method to exploit existing hardware texture compression circuits to facilitate the decompression of vertex data in graphics processing unit (GPUs). This built-in hardware allows real-time, random-order decoding of data. However, vertex data must be packed into textures, and careless packing arrangements can easily disrupt data coherence. Hence, we propose an optimization approach for the best vertex data permutation that minimizes compression error. All of these result in fast and high-quality vertex data decompression for real-time rendering. To further improve the visual quality, we introduce vertex clustering to reduce the dynamic range of data during quantization. Our experiments demonstrate the effectiveness of our method for various vertex data of 3D models during rendering with the advantages of a minimized memory footprint and high frame rate.

4.
Sensors (Basel) ; 16(4)2016 Apr 11.
Article in English | MEDLINE | ID: mdl-27077855

ABSTRACT

Exterior orientation parameters' (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang'E-1, compared to the existing space resection model.

SELECTION OF CITATIONS
SEARCH DETAIL
...