Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 9(6)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32531904

ABSTRACT

Besides their positive role, microorganisms are related to a number of undesirable effects, including many diseases, biodeterioration and food spoilage, so when their presence is undesired, they must be controlled. Numerous biocides limiting the development of microorganisms have been proposed, however, in this paper the biocidal and inhibitory activity of quaternary ammonium salts (QASs) and their zwitterionic derivatives is addressed. This paper presents the current state of knowledge about the biocidal activity of QAS and their derivatives. Moreover, the known mechanisms of antimicrobial activity and the problem of emerging resistance to QAS are discussed. The latest trends in the study of surfactants and their potential use are also presented.

2.
Sci Rep ; 10(1): 2911, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32076050

ABSTRACT

Quaternary ammonium compounds (QACs) are classified as cationic surfactants, and are known for their biocidal activity. However, their modes of action are thus far not completely understood. In this study, we synthesized a gemini QAC, PMT12-BF4 and found that it exerted unsurpassed broad-spectrum antifungal activity against drug susceptible and resistant Candida albicans, and other pathogenic fungi, with a minimal inhibitory concentration (MIC) at 1 or 2 µg/mL. These results indicated that PMT12-BF4 used a mode of action distinct from current antifungal drugs. In addition, fungal pathogens treated with PMT12-BF4 were not able to grow on fresh YPD agar plates, indicating that the effect of PMT12-BF4 was fungicidal, and the minimal fungicidal concentration (MFC) against C. albicans isolates was 1 or 2 µg/mL. The ability of yeast-to-hyphal transition and biofilm formation of C. albicans was disrupted by PMT12-BF4. To investigate the modes of action of PMT12-BF4 in C. albicans, we used an RNA sequencing approach and screened a C. albicans deletion mutant library to identify potential pathways affected by PMT12-BF4. Combining these two approaches with a spotting assay, we showed that the ability of PMT12-BF4 to inhibit C. albicans is potentially linked to iron ion homeostasis.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/metabolism , Homeostasis , Iron/metabolism , Quaternary Ammonium Compounds/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Biofilms/drug effects , Candida albicans/genetics , Candida albicans/ultrastructure , Cell Line , Cell Survival/drug effects , Genes, Fungal , HEK293 Cells , Homeostasis/drug effects , Humans , Hyphae/drug effects , Ions , Kinetics , Microbial Sensitivity Tests , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/pharmacology
3.
J Surfactants Deterg ; 20(1): 151-158, 2017.
Article in English | MEDLINE | ID: mdl-28111518

ABSTRACT

A new method for the preparation of new heterocyclic amine surfactants based on sulfobetaines is proposed. Interfacial activities of the surfactants obtained in aqueous solution were studied by surface tension measurements. The critical micelle concentration, surface excess concentration, minimum area per surfactant molecule, and standard Gibbs energy of adsorption were determined. The adsorption properties of these compounds depend significantly on the alkyl chain length. Alkyl chain length also affects biological properties of the new surfactants, determining the minimum inhibitory concentration and size of inhibited growth zone. The compounds have high antimicrobial activity.

4.
J Surfactants Deterg ; 18(3): 477-486, 2015.
Article in English | MEDLINE | ID: mdl-25814830

ABSTRACT

Three new heterogemini sulfobetaines and their chloride salts were synthesised. The interfacial activities of the obtained chlorides in aqueous solution were studied by equilibrium and dynamic surface tension measurements. The critical micelle concentration, surface excess concentration, minimum area per surfactant molecule and standard Gibbs energy of adsorption as well as micelle lifetime and diffusion coefficient were determined. The adsorption properties and micelle lifetime of these compounds significantly depend on the length of alkyl chain. The critical micelle concentration decreases with increasing chain length of the compounds considered. The values of the diffusion coefficient of N-alkyl-N-methyl-N-(3-sulfopropyl)-6-(N-alkyl-N-methylamino)hexylammonium chloride tend to decrease as the concentration is increased.

SELECTION OF CITATIONS
SEARCH DETAIL
...