Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2779: 259-271, 2024.
Article in English | MEDLINE | ID: mdl-38526789

ABSTRACT

COVID-19 is a global pandemic caused by the highly infectious SARS-CoV-2 virus. Efforts to combat SARS-CoV-2 infection include mass vaccination and development of monoclonal and convalescent plasma therapeutics that require precise measurements of correlative, functional neutralizing antibodies that prevent virus infection. Developing rapid, safe, easy-to-use, and high-quality neutralization assays are essential for the success of the massive effort. Here, we developed a vesicular stomatitis virus-based neutralization assay that was capable of quantifying varying degrees of neutralization in patient serum samples. This assay has two detection readouts, flow cytometry and live cell imaging. The two readout methods produced consistent values of all 50% neutralization titers, further enhancing measurement confidence on the assay. Moreover, the use of available reference standards such as the World Health Organization International Standard (NIBSC code 20/136) enables quantification and standardization of the pseudovirus neutralization assay with neutralizing antibody titers measured in International Units/mL. Quantitative and standardized neutralization assays are critical for reliable efficacy evaluation and comparison of numerous vaccines and therapeutics.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Serotherapy , Immunologic Tests , Flow Cytometry , Antibodies, Neutralizing , Antibodies, Viral , Neutralization Tests , Spike Glycoprotein, Coronavirus
2.
Int J Mol Sci ; 24(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37958688

ABSTRACT

COVID-19 has highlighted challenges in the measurement quality and comparability of serological binding and neutralization assays. Due to many different assay formats and reagents, these measurements are known to be highly variable with large uncertainties. The development of the WHO international standard (WHO IS) and other pool standards have facilitated assay comparability through normalization to a common material but does not provide assay harmonization nor uncertainty quantification. In this paper, we present the results from an interlaboratory study that led to the development of (1) a novel hierarchy of data analyses based on the thermodynamics of antibody binding and (2) a modeling framework that quantifies the probability of neutralization potential for a given binding measurement. Importantly, we introduced a precise, mathematical definition of harmonization that separates the sources of quantitative uncertainties, some of which can be corrected to enable, for the first time, assay comparability. Both the theory and experimental data confirmed that mAbs and WHO IS performed identically as a primary standard for establishing traceability and bridging across different assay platforms. The metrological anchoring of complex serological binding and neuralization assays and fast turn-around production of an mAb reference control can enable the unprecedented comparability and traceability of serological binding assay results for new variants of SARS-CoV-2 and immune responses to other viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Monoclonal , Biological Assay , Data Analysis , Antibodies, Viral , Antibodies, Neutralizing
3.
Sci Rep ; 13(1): 14470, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660227

ABSTRACT

Lentiviral vectors (LV) have proven to be powerful tools for stable gene delivery in both dividing and non-dividing cells. Approval of these LVs for use in clinical applications has been achieved by improvements in LV design. Critically important characteristics concerning quality control are LV titer quantification and the detection of impurities. However, increasing evidence concerning high variability in titration assays indicates poor harmonization of the methods undertaken to date. In this study, we developed a direct reverse transcription droplet digital PCR (Direct RT-ddPCR) approach without RNA extraction and purification for estimation of LV titer and RNA genome integrity. The RNA genome integrity was assessed by RT-ddPCR assays targeted to four distant regions of the LV genome. Results of the analyses showed that direct RT-ddPCR without RNA extraction and purification performs similarly to RT-ddPCR on purified RNA from 3 different LV samples, in terms of robustness and assay variance. Interestingly, these RNA titer results were comparable to physical titers by p24 antigen ELISA (enzyme-linked immunosorbent assay). Moreover, we confirmed the partial degradation or the incomplete RNA genomes in the prepared 3 LV samples. These results may partially explain the discrepancy of the LV particle titers to functional titers. This work not only demonstrates the feasibility of direct RT-ddPCR in determining LV titers, but also provides a method that can be easily adapted for RNA integrity assessment.


Subject(s)
RNA , Reverse Transcription , Biological Assay , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction
4.
Int J Mol Sci ; 24(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37569707

ABSTRACT

COVID-19 is an ongoing, global pandemic caused by the novel, highly infectious SARS-CoV-2 virus. Efforts to mitigate the effects of SARS-CoV-2, such as mass vaccination and development of monoclonal therapeutics, require precise measurements of correlative, functional neutralizing antibodies that block virus infection. The development of rapid, safe, and easy-to-use neutralization assays is essential for faster diagnosis and treatment. Here, we developed a vesicular stomatitis virus (VSV)-based neutralization assay with two readout methods, imaging and flow cytometry, that were capable of quantifying varying degrees of neutralization in patient serum samples. We tested two different spike-pseudoviruses and conducted a time-course assay at multiple multiplicities of infection (MOIs) to optimize the assay workflow. The results of this assay correlate with the results of previously developed serology and surrogate neutralization assays. The two pseudovirus readout methods produced similar values of 50% neutralization titer values. Harvest-free in situ readouts for live-cell imaging and high-throughput analysis results for flow cytometry can provide unique capabilities for fast evaluation of neutralization, which is critical for the mitigation of future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Flow Cytometry , Antibodies, Viral , Neutralization Tests/methods , Antibodies, Neutralizing
5.
J Proteome Res ; 21(5): 1229-1239, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35404046

ABSTRACT

Mass spectrometry (MS)-based proteomic measurements are uniquely poised to impact the development of cell and gene therapies. With the adoption of rigorous instrumental performance qualifications (PQs), large-scale proteomics can move from a research to a manufacturing control tool. Especially suited, data-independent acquisition (DIA) approaches have distinctive qualities to extend multiattribute method (MAM) principles to characterize the proteome of cell therapies. Here, we describe the development of a DIA method for the sensitive identification and quantification of proteins on a Q-TOF instrument. Using the improved acquisition parameters, we defined a control strategy and highlighted some metrics to improve the reproducibility of SWATH acquisition-based proteomic measurements. Finally, we applied the method to analyze the proteome of Jurkat cells that here serves as a model for human T-cells. Raw and processed data were deposited in PRIDE (PXD029780).


Subject(s)
Proteome , Proteomics , Data Accuracy , Humans , Mass Spectrometry/methods , Proteome/analysis , Proteomics/methods , Reproducibility of Results
6.
Cytometry A ; 99(10): 1022-1032, 2021 10.
Article in English | MEDLINE | ID: mdl-33305901

ABSTRACT

Quantitative phase imaging (QPI) provides an approach for monitoring the dry mass of individual cells by measuring the optical pathlength of visible light as it passes through cells. A distinct advantage of QPI is that the measurements result in optical path length quantities that are, in principle, instrument independent. Reference materials that induce a well-defined optical pathlength shift and are compatible with QPI imaging systems will be valuable in assuring the accuracy of such measurements on different instruments. In this study, we evaluate seven combinations of microspheres embedded in index refraction matching media as candidate reference materials for benchmarking the performance of a QPI system and as calibration standards for the optical pathlength measurement. Poly(methyl metharylate) microspheres and mineral oil were used to evaluate the range of illumination apertures, signal-to-noise ratios, and focus positions that allow an accurate quantitative optical pathlength measurement. The microsphere-based reference material can be used to verify settings on an instrument that are suitable for obtaining an accurate pathlength measurement from biological cells. The microsphere/media reference material is applied to QPI-based dry mass measurements of a population of HEK293 cells to benchmark and provide evidence that the QPI image data are accurate.


Subject(s)
Benchmarking , Light , Calibration , HEK293 Cells , Humans , Microspheres
7.
J Tissue Eng Regen Med ; 13(2): 203-216, 2019 02.
Article in English | MEDLINE | ID: mdl-30537333

ABSTRACT

Connective tissue progenitors (CTPs) are defined as the heterogeneous population of tissue-resident stem and progenitor cells that are capable of proliferating and differentiating into connective tissue phenotypes. The prevalence and variation in clonal progeny of CTPs can be characterized using a colony formation assay. However, colony assays do not directly assess the characteristics of the colony-founding CTP. We performed large, field-of-view, time-lapse microscopy to manually track colonies back to the founding cells. Image processing and analysis was used to characterize the colonies and their founding cells. We found that the traditional colony-forming unit (CFU) assay underestimates the number of founding cells as colonies can be formed by more than one founding cell. After 6 days in culture, colonies do not completely express CD73, CD90, and CD105. Heterogeneity in colony cells was characterized by two cell populations, proliferative and spread cells. Regression modelling of duration of lag phase and doubling time by cell marker suggests the presence of CD90 and CD105 in CTP subpopulations with different proliferative capabilities. From mathematical modelling of clonal colonies, we quantitatively characterized proliferation, migration, and cell marker expression rates to identify desirable clones for selection. Direct assessment of colony formation parameters led to more accurate assessment of CFU heterogeneity. Furthermore, these parameters can be used to quantify the diversity and hierarchy of stem and progenitor cells from a cell source or tissue for tissue engineering applications.


Subject(s)
Antigens, Differentiation/biosynthesis , Cortical Bone/metabolism , Image Processing, Computer-Assisted , Models, Biological , Stem Cells/metabolism , Cell Culture Techniques , Colony-Forming Units Assay , Cortical Bone/cytology , Female , Humans , Male , Microscopy , Stem Cells/cytology
9.
SLAS Technol ; 22(2): 217-223, 2017 04.
Article in English | MEDLINE | ID: mdl-28095177

ABSTRACT

Stem and progenitor cells derived from human tissues are being developed as cell sources for cell-based assays and therapies. However, tissue-derived stem and progenitor cells are heterogeneous. Differences in observed clones of stem cells likely reflect important aspects of the underlying state of the source cells, as well as future potency for cell therapies. This paper describes a colony analysis and picking device that provides quantitative analysis of heterogeneous cell populations and precise tools for cell picking for research or biomanufacturing applications. We describe an integrated robotic system that enables image acquisition and automated image analysis to be coupled with rapid automated selection of individual colonies in adherent cell cultures. Other automated systems have demonstrated feasibility with picking from semisolid media or off feeder layers. We demonstrate the capability to pick adherent bone-derived stem cells from tissue culture plastic. Cells are efficiently picked from a target site and transferred to a recipient well plate. Cells demonstrate viability and adherence and maintain biologic potential for surface markers CD73 and CD90 based on phase contrast and fluorescence imaging 6 days after transfer. Methods developed here can be applied to the study of other stem cell types and automated culture of cells.


Subject(s)
Cytological Techniques/methods , Optical Imaging/methods , Regenerative Medicine/methods , Stem Cells/physiology , Automation, Laboratory/methods , Cytological Techniques/instrumentation , Humans , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Optical Imaging/instrumentation , Regenerative Medicine/instrumentation , Robotics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...