Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Parasitol Res ; 122(12): 3205-3212, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37874391

ABSTRACT

Mosquitoes are important vectors of several arthropod-borne diseases, which remain a priority for epidemiological research. Mosquito vector control strategies have traditionally relied on chemical insecticides such as synthetic pyrethroids. However, the indiscriminate use of pesticides has resulted in the development of resistance in many mosquito species. In insects, resistance evolves primarily through the overexpression of one or more gene products from the cytochrome P450, carboxylesterase, and glutathione superfamilies. The current study examined the expression of cytochrome P450 CYP6M2, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes in larvae and adults of a permethrin-resistant (PerRes) and susceptible (Sus) Culex quinquefasciatus strains. The results showed that the CYP6AA7 gene was overexpressed (10-fold) in larvae and adults with PerRes (p < 0.01) followed by CYPJ34 (9.0-fold) and CYP6Z2 (5.0-fold) compared to the Sus, whereas fewer changes in CYP6M gene expression were observed in PerRes adults (p < 0.05), and no expression was found in larvae. The esterase gene was overexpressed in PerRes larvae (9.0-fold) followed by adults (2.5-fold) compared to the susceptible strain. Based on data, the present study suggests that cytochrome P450, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes were involved in permethrin resistance in larval and adult Cx. quinquefasciatus.


Subject(s)
Culex , Insecticides , Pyrethrins , Animals , Permethrin/pharmacology , Larva/genetics , Larva/metabolism , Insecticide Resistance/genetics , Insecticides/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Esterases/genetics , Esterases/metabolism
2.
J Parasitol Res ; 2023: 5907603, 2023.
Article in English | MEDLINE | ID: mdl-36872938

ABSTRACT

This study intended to evaluate the larvicidal activity of Feronia limonia leaf essential oil against the wild population of Anopheles arabiensis Patton larvae in laboratory and semi-field environments. Larvae mortality was observed after 12, 24, 48, and 72 hours of exposure. In laboratory condition, the essential oil showed good larvicidal activity against An. arabiensis (LC50 = 85.61 and LC95 = 138.03 ppm (after 12 hours); LC50 = 65.53 and LC95 = 117.95 ppm (after 24 hours); LC50 = 32.18 and LC95 = 84.59 ppm (after 48 hours); LC50 = 8.03 and LC95 = 60.45 ppm (after 72 hours), while in semi-field experiments, larvicidal activity was (LC50 = 91.89 and LC95 = 134.93 ppm (after 12 hours); LC50 = 83.34 and LC95 = 109.81 ppm (after 24 hours); LC50 = 66.78 and LC95 = 109.81 (after 28 hours); LC50 = 47.64 and 90.67 ppm (after 72 hours). These results give an insight on the future use of F. limonia essential oils for mosquitoes control.

3.
Parasitol Res ; 122(5): 1245-1253, 2023 May.
Article in English | MEDLINE | ID: mdl-36949289

ABSTRACT

Despite high levels of pyrethroid resistance reported in malaria vectors, long-lasting insecticidal nets (LNs) still play a key role in controlling malaria transmission. This study tested the efficacy of MiraNet®, a pyrethroid-based LN against a wild population of Anopheles arabiensis in northern Tanzania. DuraNet® was used as a positive control in this evaluation. Standard WHO laboratory bioefficacy evaluations of MiraNet and DuraNet that were unwashed or had been washed 20 times indicated optimal knockdown and mortality for both net types against a susceptible strain of Anopheles gambiae s.s. Standard experimental hut evaluations were conducted to evaluate the efficacy of both nets against a wild population of An. arabiensis. The killing effect of MiraNet was 54.5% for unwashed and 50% for 20 times washed while DuraNet achieved 44.4% mortality for unwashed and 47.4% for 20 times washed against wild An. arabiensis. Both DuraNet and MiraNet exhibited significantly higher killing effects (> 44.4%). There was no significant difference in deterrence or induced exophily detected between the treatment arms for either net. Additionally, there were no adverse effects reported among hut sleepers. The results of this study indicate that the pyrethroid net MiraNet can be used effectively against wild populations of An. gambiae s.l. of low to moderate resistant levels from Northern Tanzania.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Animals , Insecticides/pharmacology , Anopheles/genetics , Tanzania , Insecticide Resistance , Mosquito Control/methods , Mosquito Vectors , Pyrethrins/pharmacology , Malaria/prevention & control
4.
Heliyon ; 8(12): e12178, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36578426

ABSTRACT

In Ethiopia, malaria incidence has significantly reduced in the past decade through the combined use of conventional vector control approaches and treatment using antimalarial drugs. However, the sustainability of this achievement is threatened by the shift in biting and resting behaviors and emergence of insecticide resistance by the primary malaria vector. Therefore, continuous monitoring of the behaviour of malaria mosquitoes in different sentinel sites is crucial to design effective prevention and control methods in the local context. Entomological investigations were conducted in three sentinel sites for five consecutive months during the major malaria transmission season. The species composition, population dynamics, biting and resting behaviours of malaria vectors were determined using center for disease control and prevention (CDC) light trap, human landing catch (HLC), pyrethrum spray catch (PSC) and Pitfall shelter collection (PFS). Accordingly, 10 households for CDC, 10 households for PSC, 10 households for PFS and 5 households for HLC from each site were randomly enrolled for mosquito collection. A total of 8,297 anopheline mosquitoes were collected from the three sites, out of which 4,525 (54.5 %) were An. gambiae, s.l. 2,028 (24.4 %) were An. pharoensis, 160 (1.9 %) were An. funestus and the rest 1,584 (19 %) were other anophelines (An. coustani, An. cinerus and An. tenebrosus). No significant variation (P = 0.476) was observed between indoor (25.2/trap-night and outdoor collections (20.1/trap-night). Six hundred seventy six (43.3%) of An. gambiae s.l. (primary vector) were collected between 18:00 and 22:00 h. Biting activity declined between 00:00 and 02:00 h. The national malaria control program should pay close attention to the shifting behavior of vector mosquitoes as the observed outdoor feeding tendency of the vector population could pose challenges to the indoor intervention tools IRS and LLINs.

5.
Sci Total Environ ; 852: 158502, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36058332

ABSTRACT

Mosquitoes' current insecticide resistance status in available public health insecticides is a serious threat to mosquito control initiatives. Microbe-based control agents provide an alternative to conventional pesticides and insecticides, as they can be more targeted than synthetic insecticides. The present study was focused on identifying and investigating the mosquitocidal potential of Cladophialophora bantiana, an endophytic fungus isolated from Opuntia ficus-indica. The Cladophialophora species was identified through phylogenetic analysis of the rDNA sequence. The isolated fungus was first evaluated for its potential to produce metabolites against Aedes aegpti and Culex quinquefasciatus larvae in the 1-4th instar. The secondary metabolites of mycelium extract were assessed at various test doses (100, 200, 300, 400, and 500 µg/mL) in independent bioassays for each instar of selected mosquito larvae. After 48 h of exposure, A. aegypti expressed LC50 values of 13.069, 18.085, 9.554, and 11.717 µg/mL and LC90 = 25.702, 30.860, 17.275, and 19.601 µg/mL; followed by C. quinquefasciatus LC50 = 14.467, 11.766, 5.934, and 7.589 µg/mL, and LC90 = 29.529, 20.767, 11.192, and 13.296 µg/mL. The mean % of ovicidal bioassay was recorded 120 h after exposure. The hatchability (%) was proportional to mycelia metabolite concentration. The enzymatic level of acetylcholinesterase in fungal mycelial metabolite treated 4th instar larvae indicated a dose-dependent pattern. The GC-MS profile of C. bantiana extracts identified five of the most abundant compounds, namely cyclobutane, trans-3-undecene-1,5-diyne, 1-bromo-2-chloro, propane, 1,2,3-trichloro-2-methyl-, 5,5,10,10-tetrachlorotricyclo, and phenol, which had the killing effect in mosquitoes. Furthermore, the C. bantiana fungus ethyl acetate extracts had a strong larvicidal action on A. aegypti and C. quinquefasciatus. Finally, the toxicity test on zebrafish embryos revealed the induction of malformations only at concentrations above 1 mg/mL. Therefore, our study pioneered evidence that C. bantiana fungal metabolites effectively control A. aegypti and C. qunquefasciastus and show less lethality in zebrafish embryos at concentrations up to 500 µg/mL.


Subject(s)
Aedes , Anopheles , Culex , Cyclobutanes , Insecticides , Animals , Zebrafish , Insecticides/toxicity , Acetylcholinesterase , Propane/pharmacology , Phylogeny , Cyclobutanes/pharmacology , Plant Extracts/pharmacology , Mosquito Control , Larva , Phenols , DNA, Ribosomal , Diynes/pharmacology , Plant Leaves
6.
Malar J ; 21(1): 219, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35836226

ABSTRACT

BACKGROUND: More than 90% of malaria cases occur in Africa where the disease is transmitted by Anopheles gambiae and Anopheles arabiensis. This study evaluated the anti-mosquito properties of Juniperus virginiana (JVO) and Pelargonium roseum (PRO) essential oils (EOs) against larvae and adults of An. gambiae sensu lato (s.l.) from East Africa in laboratory and semi-field conditions. METHODS: EOs was extracted from the aerial green parts of Asian herbs by hydrodistillation. Their constituents were characterized by gas chromatography-mass spectrometry (GC-MS). Larvicidal activities of JVO, PRO, and PRO components [citronellol (CO), linalool (LO), and geraniol (GO)] were investigated against An. gambiae sensu stricto (s.s.). The percentage of knockdown effects and mortality rates of all oils were also evaluated in the adults of susceptible An. gambiae s.s. and permethrin-resistant An. arabiensis. RESULTS: GC-MS analyses identified major constituents of JVO (sabinene, dl-limonene, ß-myrcene, bornyl acetate, and terpinen-4-ol) and PRO (citronellol, citronellyl formate, L-menthone, linalool, and geraniol). Oils showed higher larvicidal activity in the laboratory than semi-field trials. The LC50 values for JVO/PRO were computed as 10.82-2.89/7.13-0.9 ppm and 10.75-9.06/13.63-8.98 ppm in laboratory and semi-field environments, respectively at exposure time of 24-72 h. The percentage of knockdown effects of the oils were also greater in An. gambiae s.s. than in An. arabiensis. Filter papers impregnated with JVO (100 ppm) and PRO (25 ppm) displayed 100% mortality rates for An. gambiae s.s. and 3.75% and 90% mortality rates, for An. arabiensis populations, respectively. Each component of CO, LO, and GO exhibited 98.13%, 97.81%, and 87.5%, respectively, and a mixture of the PRO components indicated 94.69% adult mortality to permethrin-resistant An. arabiensis. CONCLUSIONS: The findings of this study show that PRO and its main constituents, compared to JVO, have higher anti-mosquito properties in terms of larvicidal, knockdown, and mortality when applied against susceptible laboratory and resistant wild populations of An. gambiae s.l. Consequently, these oils have the potential for the development of new, efficient, safe, and affordable agents for mosquito control.


Subject(s)
Anopheles , Cupressaceae , Geraniaceae , Insecticides , Juniperus , Malaria , Oils, Volatile , Pelargonium , Animals , Insecticides/chemistry , Insecticides/pharmacology , Larva , Mosquito Control/methods , Mosquito Vectors , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Permethrin/pharmacology , Plant Oils/pharmacology
7.
Acta Trop ; 233: 106566, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35724712

ABSTRACT

BACKGROUND: Rodents are known to be reservoirs of plague bacteria, Yesinia pestis in the sylvatic cycle. A preliminary investigation of the suspected plague outbreak was conducted in Madunga Ward, Babati District Council in Manyara Region December-2019-January 2020 Following reported two cases which were clinically suspected as showing plague disease symptoms. METHOD: The commensal and field rodents were live trapped using Sherman traps in Madunga Ward, where plague suspect cases were reported and, in the Nou-forest reserve areas at Madunga Ward, Babati District Council, to assess plague risk in the area. Fleas were collected inside the houses using light traps and on the rodents 'body after anaesthetizing the captured rodent to determine flea indices which are used to estimate the risk of plague transmission. Lung impression smears were made from sacrificed rodents to examine for possible bipolar stained Yersinia spp bacilli. RESULTS: A total of 86 rodents consisting of ten rodent species were captured and identified from the study sites. Nine forest rodent species were collected. Field/fallow rodent species were dominated by Mastomys natalensis. whereas domestic rodent species captured was Rattus rattus. Overall lung impression smear showed bipolar stain were 14 (16.28%) while House Flea Index (HFI) was 3.1 and Rodent Flea Index (RFI) was 1.8. CONCLUSION: The findings of this study have shown that, the presence of bipolar stained bacilli in lung impression smears of captured species of rodents indicates (not confirmed) possible circulation of Yesrsinia pests in rodents and the high flea indices in the area which included the most common flea species known to be plague vectors in Tanzania could have played transmission role in this suspected outbreak. The study recommends surveillance follow-up in the area and subject collected samples to the standard plague confirmatory diagnosis.


Subject(s)
Plague , Siphonaptera , Animals , Disease Outbreaks , Forests , Plague/diagnosis , Plague/epidemiology , Plague/microbiology , Rats , Rodentia/microbiology , Siphonaptera/microbiology , Tanzania/epidemiology
8.
J Parasitol Res ; 2022: 6313773, 2022.
Article in English | MEDLINE | ID: mdl-35761826

ABSTRACT

Diet quality is of paramount importance for egg batch size, longevity, and mortality of vector mosquitoes. Oviposition site presence and absence assumed to be dry season means a lot to the survivorship and mortality of most anthropophilic malaria vectors in sub-Saharan Africa. This study has assessed the effect of different diets and oviposition-site deprivation (OSD) on survivorship, longevity, and mortality of An. gambiae s.s. To determine the effect of diet and OSD on mortality, gonotrophic dissociation rates, longevity, and survivorship, six treatments were employed: Blood Fed with Oviposition (BFO), Blood Fed without oviposition (BF), Blood and Sugar Fed with Oviposition (BSFO), Blood and Sugar Fed without oviposition (BSF), Sugar Fed with Oviposition (SFO), and Sugar Fed without oviposition (SF). Mortality and gonotrophic dissociation were monitored daily. This study found that female mosquitoes offered blood meals with sugar solution and oviposition deprivation survived longer than those deprived of oviposition deprivation. Similarly, female mosquitoes fed on blood and provided with oviposition deprivation lived longer than those without oviposition deprivation. The gonotrophic dissociation rates were found to be lower in groups provided with oviposition deprivation. Our results show that OSD has a direct impact on the survivorship, gonotrophic dissociation rate, and longevity of the malaria anthropophilic vector, An. gambiae s.s., regardless of the diet.

9.
Trop Dis Travel Med Vaccines ; 8(1): 7, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35361266

ABSTRACT

Malaria vector control programs in Sub-Saharan Africa have invested many efforts and resources in the control of eight-sibling species of Anopheles gambiae complex and An. funestus group. The behaviour of sibling species of these vectors is well known and used for implementing the current intervention tools. The reports of An. stephensi in urban Africa with different habitats breeding behaviour is an alert on the success of malaria vector control efforts achieved so far. This communication intends to give an insight on what should be considered as a challenge for the management of An. stephensi in urban Africa to retain the achievement attained in malaria control.

10.
Trop Med Health ; 50(1): 17, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35216617

ABSTRACT

Primaquine is a gametocytocidal drug known to significantly reduce malaria transmission. However, primaquine induces a dose-dependent acute hemolytic anemia (AHA) in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency that has led to a limited use of the drug especially in Africa where the condition is common. The World Health Organization (WHO) now recommends a single low dose (SLD) of primaquine (0.25 mg/kg) as P. falciparum gametocytocidal without the need for prior screening of G6PD status. Adoption and implementation of SLD primaquine in Africa may probably reduce malaria transmission, a pre-requisite for malaria elimination. This review therefore, focused on the safety of primaquine for control of malaria in Africa. The literature search was performed using online database Google Scholar, PubMed, HINARI, and Science Direct. Search terms used were "malaria", "primaquine", "safety", "G6PD deficiency", "large scale" or "mass administration". Clinical trials in many African countries have shown SLD primaquine to be safe especially in a milder African G6PD A- variant. Likewise, large-scale primaquine administrations outside Africa involving hundreds of thousands to tenths of millions of participants and with severe variants of G6PD deficiency have also shown primaquine to be safe and well-tolerated. Fourteen deaths associated with primaquine have been reported globally over the past 6 decades, but none occurred following the administration of SLD primaquine. Available evidence shows that the WHO-recommended SLD primaquine dose added to effective schizonticides is safe and well-tolerated even in individuals with G6PD deficiency, and therefore, it can be safely used in the African population with the mildest G6PD A- variant.

11.
J Fungi (Basel) ; 8(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35050008

ABSTRACT

A field survey was done in teak (Tectona grandis F.) forests in South India to explore the entomopathogenic effect of Metarhizium anisopliae (Ascomycota: Sordariomycetes) against teak defoliator, Hyblaea puera (Lepidoptera: Hyblaeidae). About 300 soils and infected insect samples were collected during the survey and thirty-six fungal isolates were isolated from soil and insect samples and characterized. The fungi were cultured on PDAY with dodine and antibiotics. Generally, the EPF culture was incubated at 27 °C in darkness for 15 days. Virulence of the Entomopathogenic Fungi (EPF) ability to germinate under cold and heat temperatures was assessed in a culture impregnated with conidia. In the experiment, it was found that for the first time Metarhizium quizhouense, Metarhizium robertsii, and Metarhizium majus species caused significantly higher mortality to hosts. These isolates of M. anisopliae, M. robertsii, M. majus, and M. quizhouense were all considered to be effective virulent and environmentally adaptive. The Metarhizium isolates were recommended as effective bio-control agents through the field investigation of teak defoliator Hyblaea puera from South India forest. This study paves the way to utilize the indigenous isolates of EPF for the control of teak defoliator and to combat the pests thatare resistant to insecticide.

12.
Neotrop Entomol ; 51(1): 151-159, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34822111

ABSTRACT

The present study focused on preparing a nano-ointment base integrated with biogenic gold nanoparticles from Artemisia vulgaris L. leaf extract. As prepared, nano-ointment was characterized by using Fourier-transform infrared spectroscopy, and the morphology of the nano-ointment was confirmed through a scanning electron microscope. Initially, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide results showed nano-ointment cytocompatibility at different concentrations (20-200 µg/mL) against L929 cells. The in vitro hemolysis assay also revealed that the nano-ointment is biocompatible. Further studies confirmed that nano-ointment has repellent activity with various concentrations (12.5, 25, 50, 75, and 100 ppm). At 100 ppm concentration, the highest repellent activity was observed at 60-min protection time against the Aedes aegypti L. female mosquitoes. The results indicated that the increasing concentration of nano-ointment prolongs the protection time. Moreover, the outcome of this study provides an alternative nano-ointment to synthetic repellent and insecticides after successful clinical trials. It could be an eco-friendly, safer nano-bio repellent, which can protect from dengue fever mosquitoes.


Subject(s)
Aedes , Anopheles , Insecticides , Metal Nanoparticles , Animals , Gold , Larva , Ointment Bases , Plant Extracts , Plant Leaves
13.
Article in English | MEDLINE | ID: mdl-34639837

ABSTRACT

Currently, medical and stored grain pests are major concerns of public health and economies worldwide. The synthetic pesticides cause several side effects to human and non-target organisms. Copper nanoparticles (CuNPs) were synthesized from an aqueous extract of Metarhizium robertsii and screened for insecticidal activity against Anopheles stephensi, Aedes aegypti, Culex quinquefasciatus, Tenebrio molitor and other non-target organisms such as Artemia salina, Artemia nauplii, Eudrilus eugeniae and Eudrilus andrei. The synthesized copper nano-particles were characterized using, UV-vis spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy Dispersive X-Ray analysis (EDaX), High Resolution Scanning Electron Microscope (HR-SEM) and Atomic Force Microscope (AFM) analysis. Insects were exposed to 25 µg/mL concentration produced significant mortality against larvae of A. stephensi, A. aegypti, C. quinquefasciatus and T. molitor. The lower toxicity was observed on non-target organisms. Results showed that, M. robertsii mediated synthesized CuNPs is highly toxic to targeted pests while they had lower toxicity were observed on non-target organisms.


Subject(s)
Aedes , Culex , Insecticides , Metal Nanoparticles , Pesticides , Animals , Copper/toxicity , Humans , Insecticides/toxicity , Larva , Metal Nanoparticles/toxicity , Metarhizium , Plant Extracts , Plant Leaves , Silver
14.
Article in English | MEDLINE | ID: mdl-35284898

ABSTRACT

The success of long-lasting insecticidal nets (LLIN) as the primary method for preventing malaria is threatened by pyrethroid resistance in Anopheles vectors. New generation long-lasting nets incorporating PBO synergist (piperonyl butoxide) with pyrethroid are designed to control insecticide-resistant mosquitoes. The efficacy of Veeralin® PBO LLINs was evaluated in experimental huts against wild free-flying pyrethroid-resistant Anopheles funestus (s.l.). Mosquito mortality, blood-feeding inhibition and personal protection were compared between untreated nets, standard LLINs and PBO/pyrethroid combination nets. Blood-feeding rates recorded with 20-times washed Veeralin were not significantly different from those with 20-times washed PermaNet 3.0 LLIN, a WHO Pre-Qualification Team (PQT) approved PBO/pyrethroid LLIN. This provides evidence that Veeralin LLIN provides similar blood-feeding inhibition to the standard approved LLIN and thus meets WHO PQT criteria for blood-feeding. Results show significantly higher mortality for Veeralin PBO LLINs against pyrethroid-resistant Anopheles funestus (s.l.) compared to DuraNet, a WHO PQT approved standard pyrethroid-only LLIN, both when unwashed and washed 20 times. The improved efficacy over a standard pyrethroid-only LLIN can be attributed to the effect of PBO in the Veeralin LLIN, hence meeting the Vector Control Advisory Group (VCAG) criteria for a resistance breaking LLIN.

15.
J. Health Biol. Sci. (Online) ; 9(1): 1-4, 2021. Ilu, Graf
Article in English | LILACS | ID: biblio-1352349

ABSTRACT

Objetctive: This experimental study aimed to assess the preference of Gambusia affinis to mosquito larvae of An.gambiae s.s., Cx. quinquefasciatus and Aedes aegypti. Method: Three Gambusia affinis were introduced in a glass container with a dimension of 45cm x 25cmx 25cm. Three larvae densities were used, 90 (30 larvae per species), 120 (40 larvae per species), and 180 (60 larvae per species). Each density experiment was set in triplicate and monitored after 1, 2, 3, and 24 hours. No fish food was added to the container for larvae. Results: Results have shown that in all times A. aegypti has been the most preferred species by Gambusia affinis. Among the tested species, A. aegypti was most prayed with time and in different densities. In mixed models including density, species, and time there was no significant difference among the species predation. Conclusion: Preliminary results have shown that the appropriate choice of predators for each mosquito species can have a great impact on bio-control to substantially complement existing tools.


Objetivo: avaliar a preferência de Gambusia affinis por larvas de mosquito de An. gambiae s.s., Cx. quinquefasciatus e Aedes aegypti. Método: Três Gambusia affinis foram introduzidos em um recipiente de vidro com dimensões de 45cm x 25cm x 25cm. Foram utilizadas três densidades de larvas, 90 (30 larvas por espécie), 120 (40 larvas por espécie) e 180 (60 larvas por espécie). Cada experimento de densidade foi estabelecido em triplicado e monitorado após 1, 2, 3 e 24 horas. Nenhum alimento de peixe foi adicionado ao recipiente com larvas. Resultados: Os resultados mostraram que em todos os tempos o A. aegypti foi a espécie mais preferida por Gambusia affinis. Entre as espécies testadas, A. aegypti foi a mais predada com o tempo e em diferentes densidades. Em modelos mistos incluindo densidade, espécie e tempo, não houve diferença significativa entre a predação por espécies. Conclusão: Os resultados preliminares mostraram que a escolha apropriada de predadores para cada espécie de mosquito pode ter um grande impacto no bio-controle para complementar substancialmente as ferramentas existentes.


Subject(s)
Predatory Behavior , Biological Products , Larva
16.
Heliyon ; 6(10): e05331, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33150212

ABSTRACT

BACKGROUND: Mosquitoes biolarvicides remain the most important method for mosquito control. The previous studies have shown Aspergillus sp.-expressed larvicidal properties against mosquito species. The present study evaluated larvicidal and histopathological effect of an endophytic fungus Aspergillus tamarii isolated from theCactus stem (Opuntia ficus-indica Mill). METHOD: The molecular identification of isolated A. tamarii was done by PCR amplification (5.8s rDNA) using a universal primer (ITS-1 and ITS-2). The secondary metabolites of A. tamarii was tested for larvicidal activity against Aedes aegypti and Culex quinquefasciatus. Larvicidal bioassay of different concentrations (- 100, 300, 500, 800 and 1000 µg/mL) isolated extracts were done according to the modified protocol. Each test included a set of control groups (i.e. DMSO and distilled water). The lethal concentrations (LC50 and LC90) were calculated by probit analysis. Experimental monitoring duration was 48 h. RESULTS: The ethyl acetate extract from A. tamarii fungus resulted - excellent mosquitocidal effect against Ae. aegypti and Cx. quinquefasciatus mosquitoes, with least LC50 and LC90 values. -After 48 h, the Ae. aegypti expressed better results (LC50 = 29.10, 18.69, 16.76, 36.78 µg/mL and the LC90 = 45.59, 27.66, 27.50, 54.00 µg/mL) followed by Cx. quinquefaciatus (LC50 = 3.23, 24.99, 11.24, 10.95 µg/mL and the LC90 = 8.37, 8.29, 21.36, 20.28 µg/mL). The biochemical level of A. tamarii mycelium extract on both larvae was measured and the results shown a dose dependent activity on the level of AchE, α- and ß-carboxylesterase assay. Gas Chromatography and Mass Spectroscopy (GC-MS) profile of A. tamarii extract reflected three compounds i.e. preg-4-en-3-one, 17. α-hydroxy-17. ß-cyano- (7.39%), trans-3-undecene-1,5-diyne (45.77%) and pentane, 1,1,1,5-tetrachloro- (32.16%) which which might had attributed to larvae mortality. CONCLUSION: The findings of - present study shows that the use of endophytic A. tamarii fungal metabolites for control of dengue and filariasis vectors is promising and needs a semifield and small scale filed trials.

17.
J Trop Med ; 2020: 8017187, 2020.
Article in English | MEDLINE | ID: mdl-33061994

ABSTRACT

BACKGROUND: Insecticide resistance among the vector population is the main threat to existing control tools available. The current vector control management options rely on applications of recommended public health insecticides, mainly pyrethroids through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Regular monitoring of insecticide resistance does not provide information on important factors that affect parasite transmission. Such factors include vector longevity, vector competence, feeding success, and fecundity. This study investigated the impacts of insecticide resistance on longevity, feeding behaviour, and egg batch size of Anopheles gambiae s.l. METHOD: The larval sampling was conducted in rice fields using a standard dipper (350 ml) and reared to adults in field insectary. A WHO susceptibility test was conducted using standard treated permethrin (0.75%) and deltamethrin (0.05%) papers. The susceptible Kisumu strain was used for reference. Feeding succession and egg batch size were monitored for all survivors and control. RESULTS: The results revealed that mortality rates declined by 52.5 and 59.5% for permethrin and deltamethrin, respectively. The mortality rate for the Kisumu susceptible strain was 100%. The survival rates of wild An. gambiae s.l. was between 24 and 27 days. However, the Kisumu susceptible strain blood meal feeding was significantly higher than resistant colony (t = 2.789, df = 21, P=0.011). Additionally, the susceptible An. gambiae s.s. laid more eggs than the resistant An.gambiae s.l. colony (Χ2 = 1366, df = 1, P ≤ 0.05). CONCLUSION: It can, therefore, be concluded that the wild An. gambiae s.l. had increased longevity, blood feeding, and small egg batch size compared to Kisumu susceptible colonies.

18.
Res Rep Trop Med ; 11: 53-60, 2020.
Article in English | MEDLINE | ID: mdl-32801989

ABSTRACT

BACKGROUND: Surveillance of the clinical morbidity of malaria remains key for disease monitoring for subsequent development of appropriate interventions. This case study presents the current status of malaria morbidities following a second round of mass distribution of long-lasting insecticidal nets (LLINs) on Ukerewe Island, northwestern Tanzania. METHODS: A retrospective review of health-facility registers to determine causes of inpatient morbidities for every admitted child aged <5 years was conducted to ascertain the contribution of malaria before and after distribution of LLINs. This review was conducted from August 2016 to July 2018 in three selected health facilities. To determine the trend of malaria admissions in the selected facilities, additional retrospective collection of all malaria and other causes of admission was conducted for both <5- and >5-year-old patients from July 2014 to June 2018. For comparison purposes, monthly admissions of malaria and other causes from all health facilities in the district were also collected. Moreover, an LLIN-coverage study was conducted among randomly selected households (n=684). RESULTS: Between August 2016 and July 2018, malaria was the leading cause of inpatient morbidity, accounting for 44.1% and 20.3% among patients <5 and >5 years old, respectively. Between October 2017 and January 2018, the mean number of admissions of patients aged <5 years increased 2.7-fold at one health center and 1.02-fold for all admissions in the district. Additionally, approximately half the households in the study area had poor of LLIN coverage 1 year after mass distribution. CONCLUSION: This trend analysis of inpatient morbidities among children aged <5 years revealed an upsurge in malaria admissions in some health facilities in the district, despite LLIN intervention. This suggests the occurrence of an unnoticed outbreak of malaria admissions in all health facilities.

19.
PLoS One ; 15(5): e0232172, 2020.
Article in English | MEDLINE | ID: mdl-32365106

ABSTRACT

BACKGROUND: The fungal toxin acts as effective, low-cost chemical substances for pest control worldwide and also an alternative to synthetic insecticides. This study assessed the larvicidal potential of Metarhizium anisopliae fungi derived metabolites against Aedes aegypti, Anopheles stephensi, Culex quinquefasciatus and non-targeted organisms at 24hr post treatment. METHOD: Isolation of entomopathogenic fungi M. anisopliae from natural traps confirmed by using 18s rDNA biotechnological tools. Crude extracts from M. anisopliae solvent extraction and their secondary metabolites were bio-assayed following WHO standard procedures against Ae. aegypti, An. stephensi and Cx. quinquefasciatus, Artemia nauplii, Eudrilus eugeniae, and Solanum lycopersicum after 24 hr exposure. Histopathological analysis of E. eugeniae treated with fungi metabolites toxicity compared to those treated with Monocrotophos after 24hrpost-treatment. M. anisopliae metabolites were characterized using GC-MS and FT-IR analysis. RESULTS: The larvicidal activity was recorded in highest concentration of 75µg/ml, with 85%, 97% and 89% mortality in Ae. aegypti, An. stephensi and Cx. quinquefasciatus respectively. M. anisopliae metabolites produced LC50 values in Ae. aegypti, 59.83µg/ml, in An. stephensi, 50.16µg/ml and in Cx. quinquefasciatus, 51.15µg/ml respectively. M. anisopliae metabolites produced lower toxic effects on A. nauplii, LC50 values were, 54.96µg/ml respectively. Bio-indicator toxicity results show 18% and 58% mortality was recorded in E. eugeniae and A. nauplii and also there is no phytotoxicity that was observed on S. lycopersicum L. under semi-field condition. E. eugeniae histopathological studies shows fungal metabolites showed lower sub-lethal effects compared to synthetic chemical pesticide at 24hrs of the treatment. The GC-MS and FT-IR analysis identified five major components of active ingredients. CONCLUSION: Findings of this study indicate that, M. anisopliae ethyl acetate derived secondary metabolites are effective against larvae of Ae. aegypti, An. stephensi and Cx. quinquefasciatus mosquito species, lower toxicity effects were observed on non-target organisms such as, Artemia nauplii, Eudrilus eugeniae as well as, no toxicity effect were observed on Solanum lycopersicum. Further research should be conducted in laboratory for separation of single pure molecule and be tested semifield conditions.


Subject(s)
Aedes/drug effects , Anopheles/drug effects , Biological Products/pharmacology , Culex/drug effects , Metarhizium/chemistry , Animals , Biological Products/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Gas Chromatography-Mass Spectrometry , Insect Control , Larva/drug effects , Metarhizium/genetics , Metarhizium/isolation & purification , Monocrotophos/pharmacology , RNA, Ribosomal, 18S/genetics , Secondary Metabolism , Spectroscopy, Fourier Transform Infrared
20.
J Med Entomol ; 57(3): 933-938, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31923308

ABSTRACT

The scaling-up of malaria control interventions in northern Tanzania has resulted in a decline in malaria prevalence and vector species composition. Despite this achievement, residual malaria transmission remains a concern in the area. The main aim of this study was to investigate malaria vector species composition, parasite infectivity rates, and the presence of insecticide knockdown resistance (kdr) mutations in three sites that have experienced a significant decline in malaria in northern Tanzania. Adult mosquitoes were sampled using light traps in houses and hand-aspirators in cowsheds, whereas the standard dipping method was used for sampling mosquito larvae. Adult mosquitoes identified as Anopheles gambiae s.l. and An. funestus s.l. and larval stages III and IV of An. gambiae s.l. were stored in absolute ethanol for further laboratory molecular identification. The identified species in the An. gambiae complex were An. gambiae s.s., An. merus, An. quadriannulatus, and An. arabiensis, whereas the An. funestus group comprised An. funestus s.s., An. rivulorum, and An. leesoni. For An. gambiae s.s. analyzed from Zeneth, 47.6% were kdr-East homozygous susceptible, 35.7% kdr-East heterozygous resistant, 9.6% kdr-East homozygous resistant, and 7.1% undefined, whereas specimens from Kwakibuyu were 45.5% kdr-East homozygous susceptible, 32.7% kdr-East heterozygous resistant, 16.3% kdr-East homozygous resistant, and 5.5% undefined. There were no kdr-West alleles identified from any specimen. The overall malaria parasite infectivity rate was 0.75%. No infections were found in Moshi. The findings indicate that populations of the major malaria vector mosquitoes are still present in the study area, with An. funestus taking a lead in malaria transmission.


Subject(s)
Anopheles/physiology , Biodiversity , Insect Proteins/genetics , Insecticide Resistance/genetics , Mosquito Vectors/physiology , Animals , Anopheles/drug effects , Anopheles/growth & development , Mosquito Vectors/drug effects , Mosquito Vectors/growth & development , Mutation , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...