Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Energy Lett ; 9(3): 934-940, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38482179

ABSTRACT

High power is a critical requirement of lithium-ion batteries designed to satisfy the load profiles of advanced air mobility. Here, we simulate the initial takeoff step of electric vertical takeoff and landing (eVTOL) vehicles powered by a lithium-ion battery that is subjected to an intense 15C discharge pulse at the beginning of the discharge cycle followed by a subsequent low-rate discharge. We conducted extensive electrochemical testing to assess the long-term stability of a lithium-ion battery under these high-strain conditions. The main finding is that despite the performance recovery observed at low rates, the reapplication of high rates leads to drastic cell failure. While the results highlight the eVTOL battery longevity challenge, the findings also emphasize the need for tailored battery chemistry designs for eVTOL applications to address both anode plating and cathode instability. In addition, innovative second-use strategies would be paramount upon completion of the eVTOL services.

2.
Energy Fuels ; 30(2): 1445-1461, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-27330248

ABSTRACT

The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements.

3.
Res Rep Health Eff Inst ; (128): 1-37; discussion 39-47, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15916011

ABSTRACT

Using an in-line, real-time, in vivo exposure system, we investigated whether acute adverse effects of diesel exhaust (DE*) exposure involve neurogenic inflammation in the lungs via sensory nerve C fibers. A total of 168 female F344 rats (175 g, 8 weeks old) were randomly assigned to pretreatment with capsaicin or saline to deplete C-fiber neurotransmitters. In a 2 x 3 factorial design, groups of animals were then exposed nose-only to a low level of DE (LDE, 35.3 microg/m3), a high level of DE (HDE, 632.9 microg/m3), or side-stream cigarette smoke (CS, 0.4 mg/m3). Two control groups were exposed whole body to filtered air in the animal room (fRA) or unfiltered air in the diesel engine room (eRA), respectively. DE was taken directly from a heavy-duty Cummins N14 research engine operated at 75% throttle (California Air Resources Board [CARB] 8, mode 6). Exposure to DE or air was 4 hours/day, 5 days/week, for 3 weeks. Exposure to CS was for 4 hours/day for 7 days. Involvement of neurogenic inflammation in the response to DE or CS was assessed via comparison of plasma extravasation, a sensitive endpoint of neurogenic inflammation, between rats with and without capsaicin pretreatment. Lung injury was assessed via analysis of proinflammatory cytokines, respiratory permeability, and histopathology. Moreover, whether DE exposure affected the molecular mechanisms of neurogenic inflammation was analyzed through quantification of substance P (SP) and its primary neurokinin-1 (NK1) receptor at the gene and protein levels and through neutral endopeptidase (NEP) activity. DE and CS exposure induced dose-dependent plasma extravasation, which may play an important role in initiating the associated lung inflammation and injury. Exposure of rats to DE affected the SP signaling pathway as indicated by overexpression of the NK1 receptor or reduction of SP in the lung tissue. DE exposure consistently inactivated tissue NEP, a key factor that switches neurogenic inflammation from its physiological and protective functions to a role that increases and perpetuates lung injury. The roles of these overlapping neurokininergic mechanisms in the initiation of DE-associated lung injury are plausible, and these changes may contribute to DE-associated respiratory disorders. Capsaicin rats followed the same trends as those of saline animals when exposed to DE or CS: capsaicin rats did not have significantly different plasma extravasation in the airways or lung parenchyma compared to their corresponding controls. Histopathology evaluation likewise demonstrated the same degree of tissue changes, such as edema and alveolar macrophage collection, in capsaicin and saline rats after the same level of DE exposure. In summary, our data suggest that neurokininergic mechanisms may have been involved in DE-induced inflammatory conditions in rat lung but that C fibers did not appear to be involved under these exposure conditions. We believe that time-course or protein knockdown/knockout animal studies are required to characterize further the role of neurokininergic mechanisms in DE-induced lung injury.


Subject(s)
Lung/drug effects , Neurogenic Inflammation/chemically induced , Vehicle Emissions/toxicity , Administration, Intranasal , Animals , Female , Lung/innervation , Rats , Rats, Inbred F344
4.
Arch Toxicol ; 77(11): 638-50, 2003 Nov.
Article in English | MEDLINE | ID: mdl-13680092

ABSTRACT

This study characterizes the molecular neurotoxicity of diesel exhaust (DE) on the tachykinin substance P (SP) signaling system in the lungs. A total of 96 female Fischer 344/NH rats (approximately 175 g, approximately 4 weeks old) were randomly assigned to eight groups in a 2 x4 factorial design: capsaicin versus non-capsaicin (vehicle) pretreatment, and filtered room air versus two exposure levels of DE with diesel engine room control. The rats were exposed nose-only to room air or low (35.3 micro g/m(3)) and high concentrations (669.3 micro g/m(3)) particulates directly from a Cummins N14 research engine at 75% throttle for 4 h/day, 5 days/week, for 3 weeks. The findings showed that exposure to DE dose-dependently induced bronchopulmonary neurogenic inflammation, both in capsaicin- and vehicle-pretreated rats, as measured by plasma extravasation, edema, and inflammatory cells. DE inhalation affected the SP signaling processes, including stored SP depletion and the gene/protein overexpression for neurokinin-1 receptor. DE also significantly reduced the activity of neutral endopeptidase, a main degradation enzyme for SP. Consequently, these changes may be regarded as critical factors that switched neurogenic pulmonary responses from their protective functions to a detrimental role that perpetuates lung inflammation. These changes may possibly be associated with the mass concentration of DE particles due to their physico-chemical characteristics. Moreover, capsaicin-pretreated rats had more sensitivity to these levels of DE exposure due to stimulation of bronchopulmonary C-fibers. However, the effects of capsaicin treatment were not consistent and apparent in this study. Taken together, our findings suggest that neurokininergic mechanisms may possibly be involved in DE-induced lung inflammation, but that bronchopulmonary C-fibers did not dominate DE-induced inflammatory abnormalities.


Subject(s)
Bronchitis/chemically induced , Bronchitis/pathology , Neurogenic Inflammation/chemically induced , Neurogenic Inflammation/pathology , Pneumonia/chemically induced , Pneumonia/pathology , Signal Transduction/physiology , Substance P/physiology , Vehicle Emissions/toxicity , Animals , Capsaicin/toxicity , Endopeptidases/metabolism , Female , Immunoenzyme Techniques , Immunohistochemistry , Nerve Fibers, Unmyelinated/pathology , Neurons, Afferent/pathology , Particle Size , Radiopharmaceuticals , Rats , Rats, Inbred F344 , Receptors, Neurokinin-1/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Technetium Tc 99m Aggregated Albumin
SELECTION OF CITATIONS
SEARCH DETAIL
...