Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35682686

ABSTRACT

Apples (Malus × domestica Borkh.) require up to several years for flowering and bearing fruits. The transition from vegetative to reproductive phase is controlled by floral regulators such as TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT). TFL1 mediates the maintenance of vegetative phase, unlike the antagonistic function of FT to promote the transition into reproductive phase. In this study, we isolated apple TFL1-like gene (MdTFL1) to elucidate various phenotypic traits triggered by the antisense expression of MdTFL1 in tobacco apart from its floral induction function. Early flowering was observed in the tobacco line with MdTFL1 knockout, indicating the reduced time for transition to vegetative phases. Quantitative reverse-transcription PCR showed upregulation of genes involved in the regulation of floral induction, including NtAP1, NtSOC1, NFL1, and NtFTs, and downregulation of carotenoid cleavage dioxygenases (CCDs) and CEN-like genes in transgenic lines. Interestingly, transgenic tobacco expressing antisense MdTFL1 exhibited distinct morphological changes in lateral shoot outgrowth, internode length, and the development of leaves, flowers, and fruits. The results suggested that using the antisense expression of MdTFL1 gene is one of the approaches to shorten the vegetable phase and proposed improvement of plant architecture in horticultural crops.


Subject(s)
Malus , Flowers/metabolism , Gene Expression Regulation, Plant , Malus/metabolism , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism
2.
Int J Mol Sci ; 23(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35682835

ABSTRACT

The coloration of the apple fruit (Malus × domestica Borkh.) depends on pigment content. Light stimulus activates a broad range of photosynthesis-related genes, including carotenoids. The effect of light on two red commercial apple cultivars, 'Summer Prince' and 'Arisoo' at the juvenile stage were examined. Apple fruits were either bagged to reduce light irradiation or were exposed to direct, enhanced sunlight (reflected). The pigment content and the expression of carotenoid metabolism genes in the peel and flesh of apple fruits were significantly different between the shaded and the reflected parts. These parameters were also different in the two cultivars, highlighting the contribution of the genetic background. Further, a combination of light and transient overexpression of carotenogenic genes increased fruit coloration and pigment content in the variety 'RubyS'. Western blot analysis showed the expression of small heat shock proteins (smHSP) in lysates extracted from the reflected part of the fruits but not in the bagged fruits, indicating the activation of smHSP in response to heat generated by the reflected light. Therefore, the synergy between the genes and the environment dictates the color of apple fruits.


Subject(s)
Heat-Shock Proteins, Small , Malus , Carotenoids/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression , Gene Expression Regulation, Plant , Heat-Shock Proteins, Small/genetics , Malus/genetics , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Plants (Basel) ; 10(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34961121

ABSTRACT

Nitrogen (N) is an essential macronutrient that regulates diverse physiological processes for plant survival and development. In apple orchards, inappropriate N conditions can cause imbalanced growth and subsequent physiological disorders in trees. In order to investigate the molecular basis underlying the physiological signals for N stress responses, we examined the metabolic signals responsive to contrasting N stress conditions (deficient/excessive) in apple leaves using transcriptome approaches. The clustering of differentially expressed genes (DEGs) showed the expression dynamics of genes associated with each N stress group. Functional analyses of gene ontology and pathway enrichments revealed the potential candidates of metabolic signals responsible for N-deficient/excessive stress responses. The functional interactions of DEGs in each cluster were further explored by protein-protein interaction network analysis. Our results provided a comprehensive insight into molecular signals responsive to N stress conditions, and will be useful in future research to enhance the nutrition tolerance of tree crops.

4.
PLoS One ; 16(4): e0249975, 2021.
Article in English | MEDLINE | ID: mdl-33836019

ABSTRACT

Fruit abscission is a complex physiological process that is regulated by internal and environmental factors. During early development, apple fruit are exposed to extreme temperature fluctuations that are associated with premature fruit drop; however, their effect on fruit abscission is largely unknown. We hypothesized that fruit abscission is triggered by cold stress and investigated the molecular basis of premature fruit drop using RNA-Seq and metabolomics data from apple fruit undergoing abscission following cold stress in the field. Genes responsive to abscisic acid signaling and cell wall degradation were upregulated during abscission, consistent with the increased abscisic acid concentrations detected by liquid chromatography-mass spectrometry. We performed ex vivo cold shock experiments with excised tree subunits consisting of a branch, pedicel, and fruit. Abscission induction occurred in the cold-stressed subunits with concurrent upregulation of abscisic acid biosynthesis (MdNCED1) and metabolism (MdCYP707A) genes, and ethylene biosynthesis (MdACS1) and receptor (MdETR2) genes in the pedicel. Another key finding was the activation of cytoplasmic streaming in abscission-zone cells detected by electron microscopy. Our results provide a novel insight into the molecular basis of fruit abscission physiology in response to cold stress in apple.


Subject(s)
Abscisic Acid/metabolism , Malus/metabolism , Signal Transduction , Cell Wall/metabolism , Cold Temperature , Cold-Shock Response/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Ethylenes/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Malus/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...