Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 23(1): 188, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880870

ABSTRACT

BACKGROUND: Effective testing for malaria, including the detection of infections at very low densities, is vital for the successful elimination of the disease. Unfortunately, existing methods are either inexpensive but poorly sensitive or sensitive but costly. Recent studies have shown that mid-infrared spectroscopy coupled with machine learning (MIRs-ML) has potential for rapidly detecting malaria infections but requires further evaluation on diverse samples representative of natural infections in endemic areas. The aim of this study was, therefore, to demonstrate a simple AI-powered, reagent-free, and user-friendly approach that uses mid-infrared spectra from dried blood spots to accurately detect malaria infections across varying parasite densities and anaemic conditions. METHODS: Plasmodium falciparum strains NF54 and FCR3 were cultured and mixed with blood from 70 malaria-free individuals to create various malaria parasitaemia and anaemic conditions. Blood dilutions produced three haematocrit ratios (50%, 25%, 12.5%) and five parasitaemia levels (6%, 0.1%, 0.002%, 0.00003%, 0%). Dried blood spots were prepared on Whatman™ filter papers and scanned using attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) for machine-learning analysis. Three classifiers were trained on an 80%/20% split of 4655 spectra: (I) high contrast (6% parasitaemia vs. negative), (II) low contrast (0.00003% vs. negative) and (III) all concentrations (all positive levels vs. negative). The classifiers were validated with unseen datasets to detect malaria at various parasitaemia levels and anaemic conditions. Additionally, these classifiers were tested on samples from a population survey in malaria-endemic villages of southeastern Tanzania. RESULTS: The AI classifiers attained over 90% accuracy in detecting malaria infections as low as one parasite per microlitre of blood, a sensitivity unattainable by conventional RDTs and microscopy. These laboratory-developed classifiers seamlessly transitioned to field applicability, achieving over 80% accuracy in predicting natural P. falciparum infections in blood samples collected during the field survey. Crucially, the performance remained unaffected by various levels of anaemia, a common complication in malaria patients. CONCLUSION: These findings suggest that the AI-driven mid-infrared spectroscopy approach holds promise as a simplified, sensitive and cost-effective method for malaria screening, consistently performing well despite variations in parasite densities and anaemic conditions. The technique simply involves scanning dried blood spots with a desktop mid-infrared scanner and analysing the spectra using pre-trained AI classifiers, making it readily adaptable to field conditions in low-resource settings. In this study, the approach was successfully adapted to field use, effectively predicting natural malaria infections in blood samples from a population-level survey in Tanzania. With additional field trials and validation, this technique could significantly enhance malaria surveillance and contribute to accelerating malaria elimination efforts.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Humans , Malaria, Falciparum/diagnosis , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Plasmodium falciparum/isolation & purification , Parasitemia/diagnosis , Parasitemia/parasitology , Anemia/diagnosis , Anemia/blood , Anemia/parasitology , Spectrophotometry, Infrared/methods , Machine Learning , Parasite Load , Adult , Artificial Intelligence , Sensitivity and Specificity , Female , Young Adult , Spectroscopy, Fourier Transform Infrared/methods , Adolescent , Male , Middle Aged , Mass Screening/methods
2.
Sci Rep ; 14(1): 12100, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802488

ABSTRACT

Field-derived metrics are critical for effective control of malaria, particularly in sub-Saharan Africa where the disease kills over half a million people yearly. One key metric is entomological inoculation rate, a direct measure of transmission intensities, computed as a product of human biting rates and prevalence of Plasmodium sporozoites in mosquitoes. Unfortunately, current methods for identifying infectious mosquitoes are laborious, time-consuming, and may require expensive reagents that are not always readily available. Here, we demonstrate the first field-application of mid-infrared spectroscopy and machine learning (MIRS-ML) to swiftly and accurately detect Plasmodium falciparum sporozoites in wild-caught Anopheles funestus, a major Afro-tropical malaria vector, without requiring any laboratory reagents. We collected 7178 female An. funestus from rural Tanzanian households using CDC-light traps, then desiccated and scanned their heads and thoraces using an FT-IR spectrometer. The sporozoite infections were confirmed using enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), to establish references for training supervised algorithms. The XGBoost model was used to detect sporozoite-infectious specimen, accurately predicting ELISA and PCR outcomes with 92% and 93% accuracies respectively. These findings suggest that MIRS-ML can rapidly detect P. falciparum in field-collected mosquitoes, with potential for enhancing surveillance in malaria-endemic regions. The technique is both fast, scanning 60-100 mosquitoes per hour, and cost-efficient, requiring no biochemical reactions and therefore no reagents. Given its previously proven capability in monitoring key entomological indicators like mosquito age, human blood index, and identities of vector species, we conclude that MIRS-ML could constitute a low-cost multi-functional toolkit for monitoring malaria risk and evaluating interventions.


Subject(s)
Anopheles , Machine Learning , Malaria, Falciparum , Mosquito Vectors , Plasmodium falciparum , Animals , Anopheles/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Plasmodium falciparum/isolation & purification , Mosquito Vectors/parasitology , Female , Humans , Tanzania/epidemiology , Sporozoites , Spectrophotometry, Infrared/methods , Spectroscopy, Fourier Transform Infrared/methods
3.
Parasit Vectors ; 16(1): 342, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37789458

ABSTRACT

BACKGROUND: Pyrethroid resistance in the key malaria vectors threatens the success of pyrethroid-treated nets. To overcome pyrethroid resistance, Interceptor® G2 (IG2), a 'first-in-class' dual insecticidal net that combines alpha-cypermethrin with chlorfenapyr, was developed. Chlorfenapyr is a pro-insecticide, requiring bio-activation by oxidative metabolism within the insect's mitochondria, constituting a mode of action preventing cross-resistance to pyrethroids. Recent epidemiological trials conducted in Benin and Tanzania confirm IG2's public health value in areas with pyrethroid-resistant Anopheles mosquitoes. As chlorfenapyr might also interfere with the metabolic mechanism of the Plasmodium parasite, we hypothesised that chlorfenapyr may provide additional transmission-reducing effects even if a mosquito survives a sub-lethal dose. METHODS: We tested the effect of chlorfenapyr netting to reduce Plasmodium falciparum transmission using a modified WHO tunnel test with a dose yielding sub-lethal effects. Pyrethroid-resistant Anopheles gambiae s.s. with L1014F and L1014S knockdown resistance alleles and expression levels of pyrethroid metabolisers CYP6P3, CYP6M2, CYP4G16 and CYP6P1 confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) prior to conducting experiments were exposed to untreated netting and netting treated with 200 mg/m3 chlorfenapyr for 8 h overnight and then fed on gametocytemic blood meals from naturally infected individuals. Prevalence and intensity of oocysts and sporozoites were determined on day 8 and day 16 after feeding. RESULTS: Both prevalence and intensity of P. falciparum infection in the surviving mosquitoes were substantially reduced in the chlorfenapyr-exposed mosquitoes compared to untreated nets. The odds ratios in the prevalence of oocysts and sporozoites were 0.33 (95% confidence interval; 95% CI 0.23-0.46) and 0.43 (95% CI 0.25-0.73), respectively, while only the incidence rate ratio for oocysts was 0.30 (95% CI 0.22-0.41). CONCLUSION: We demonstrated that sub-lethal exposure of pyrethroid-resistant mosquitoes to chlorfenapyr substantially reduces the proportion of infected mosquitoes and the intensity of the P. falciparum infection. This will likely also contribute to the reduction of malaria in communities beyond the direct killing of mosquitoes.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria, Falciparum , Malaria , Parasites , Pyrethrins , Animals , Humans , Anopheles/physiology , Plasmodium falciparum , Insecticide Resistance , Mosquito Control , Mosquito Vectors/physiology , Pyrethrins/pharmacology , Insecticides/pharmacology , Malaria, Falciparum/prevention & control , Malaria/prevention & control , Probability
4.
Parasit Vectors ; 16(1): 217, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37391770

ABSTRACT

BACKGROUND: Asymptomatic malaria infections (Plasmodium falciparum) are common in school-aged children and represent a disease transmission reservoir as they are potentially infectious to mosquitoes. To detect and treat such infections, convenient, rapid and reliable diagnostic tools are needed. In this study, malaria rapid diagnostic tests (mRDT), light microscopy (LM) and quantitative polymerase chain reaction (qPCR) were used to evaluate their performance detecting asymptomatic malaria infections that are infectious to mosquitoes. METHODS: One hundred seventy asymptomatic school-aged children (6-14 years old) from the Bagamoyo district in Tanzania were screened for Plasmodium spp. infections using mRDT (SD BIOLINE), LM and qPCR. In addition, gametocytes were detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR) for all qPCR-positive children. Venous blood from all P. falciparum positive children was fed to female Anopheles gambiae sensu stricto mosquitoes via direct membrane feeding assays (DMFAs) after serum replacement. Mosquitoes were dissected for oocyst infections on day 8 post-infection. RESULTS: The P. falciparum prevalence in study participants was 31.7% by qPCR, 18.2% by mRDT and 9.4% by LM. Approximately one-third (31.2%) of asymptomatic malaria infections were infectious to mosquitoes in DMFAs. In total, 297 infected mosquitoes were recorded after dissections, from which 94.9% (282/297) were derived from infections detected by mRDT and 5.1% (15/297) from subpatent mRDT infections. CONCLUSION: The mRDT can be used reliably to detect children carrying gametocyte densities sufficient to infect high numbers of mosquitoes. Subpatent mRDT infections contributed marginally to the pool of oocyts-infected mosquitoes.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria , Animals , Humans , Child , Female , Adolescent , Plasmodium falciparum/genetics , Rapid Diagnostic Tests , Malaria, Falciparum/diagnosis , Asymptomatic Infections
5.
Malar J ; 18(1): 119, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30947717

ABSTRACT

BACKGROUND: Traditional medicinal plants are one of the potential sources of anti-malarial drugs and there is an increasing interest in the use and development of traditional herbal remedies for the treatment of malaria and other ailments. This study was carried out with the aim to investigate the phytochemical screening, cytotoxic effect and antiplasmodial activities of Dichrostachys cinerea and Commiphora africana. Both plants are used by the Maasai in Tanzania in suspected malaria and other diseases. No previous work appears to have investigated the potential anti-malarial activity of the two plants. METHODS: This study aimed to investigate the in vitro anti-malarial activity of methanol and dichloromethane extracts of the two plants against chloroquine sensitive (D6) and chloroquine resistant (Dd2) strains of Plasmodium falciparum. The anti-malarial property was assessed by the lactate dehydrogenase method (pLDH). The in vivo anti-malarial study was carried out using the Peters' 4-day suppressive test in Plasmodium berghei in Balb/c mice. Cytotoxic tests were carried out using monkey kidney epithelial cell line in [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. Qualitative phytochemical screening was carried out using standard methods of analysis. RESULTS: The phytochemical screening of plant extracts revealed the presence of alkaloids, flavonoids, tannins, steroids, triterpenoids, glycosides and saponins. However, alkaloids were absent in most plant extracts. The dichloromethane extracts of C. africana (stem bark); D. cinerea (stem bark) and methanol extracts of D. cinerea (whole stem) all showed promising in vitro anti-malarial activities. All other extracts did not show any significant anti-malarial activity. The two most promising extracts based on in vitro studies, DCM extracts of C. africana (stem bark) and D. cinerea (stems bark), equally exhibited very significant anti-malarial activities in the mouse model. They exhibited parasite suppression rates of 64.24 and 53.12%, respectively, and considerable improvement in weight and survival rate. Most plant extracts were not cytotoxic except for DCM extract of D. cinerea (whole stem) CC50 (29.44 µg/mL). CONCLUSION: The findings of this study provide scientific evidence supporting the traditional use of the plants in the treatment of malaria by the Maasai in Arusha region, Tanzania. Consequently, further work including bioassay-guided fractionation and advanced toxicity testing may yield new anti-malarial drug candidates from the two plants.


Subject(s)
Antimalarials/pharmacology , Commiphora/chemistry , Fabaceae/chemistry , Plant Extracts/pharmacology , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Animals , Chloroquine/pharmacology , Drug Resistance , Female , In Vitro Techniques , Malaria/drug therapy , Male , Mice , Mice, Inbred BALB C , Plant Bark/chemistry , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Plasmodium berghei/physiology , Plasmodium falciparum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...