Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13426, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37591918

ABSTRACT

Tetramethylalloxazines (TMeAll) have been found to have a high quantum yield of singlet oxygen generation when used as photosensitizers. Their electronic structure and transition energies (S0 → Si, S0 → Ti, T1 → Ti) were calculated using DFT and TD-DFT methods and compared to experimental absorption spectra. Generally, TMeAll display an energy diagram similar to other derivatives belonging to the alloxazine class of compounds, namely π,π* transitions are accompanied by closely located n,π* transitions. Photophysical data such as quantum yields of fluorescence, fluorescence lifetimes, and nonradiative rate constants were also studied in methanol (MeOH), acetonitrile (ACN), and 1,2-dichloroethane (DCE). The transient absorption spectra were also analyzed. To assess cytotoxicity of new compounds, a hemolytic assay was performed using human red blood cells (RBC) in vitro. Subsequently, fluorescence lifetime imaging experiments (FLIM) were performed on RBC under physiological and oxidative stress conditions alone or in the presence of TMeAll allowing for pinpointing changes caused by those compounds on the intracellular environment of these cells.

2.
Photochem Photobiol Sci ; 22(7): 1655-1671, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36934363

ABSTRACT

Flavins are a unique class of compounds that combine the features of singlet oxygen generators and redox-dependent fluorophores. From a broad family of flavin derivatives, deazaalloxazines are significantly underdeveloped from the point of view of photophysical properties. Herein, we report photophysics of 5-deazaalloxazine (1a) in water, acetonitrile, and some other solvents. In particular, triplet excited states of 1a in water and in acetonitrile were investigated using ultraviolet-visible (UV-Vis) transient absorption spectroscopy. The measured triplet lifetimes for 1a were all on the microsecond time scale (≈ 60 µs) in deoxygenated solutions. The quantum yield of S1 → T1 intersystem crossing for 1a in water was 0.43 based on T1 energy transfer from 1a to indicaxanthin (5) acting as acceptor and on comparative actinometric measurements using benzophenone (6). 1a was an efficient photosensitizer for singlet oxygen in aerated solutions, with quantum yields of singlet oxygen in methanol of about 0.76, compared to acetonitrile ~ 0.74, dichloromethane ~ 0.64 and 1,2-dichloroethane ~ 0.54. Significantly lower singlet oxygen quantum yields were obtained in water and deuterated water (Ð¤Δ ~ 0.42 and 0.44, respectively). Human red blood cells (RBC) were used as a cell model to study the antioxidant capacity in vitro and cytotoxic activity of 1a. Fluorescence-lifetime imaging microscopy (FLIM) data were analyzed by fluorescence lifetime parameters and distribution for different parts of the emission spectrum. Comparison of multidimensional fluorescent properties of RBC under physiological-like and oxidative-stress conditions in the presence and absence of 1a suggests its dual activity as probe and singlet-oxygen generator and opens up a pathway for using FLIM to analyze complex intracellular behavior of flavin-like compounds. These new data on structure-property relationship contribute to the body of information required for a rational design of flavin-based tools for future biological and biochemical applications.


Subject(s)
Photosensitizing Agents , Singlet Oxygen , Humans , Singlet Oxygen/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Flavins , Water/chemistry , Organic Chemicals , Oxidation-Reduction
3.
ChemMedChem ; 16(10): 1640-1650, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33527762

ABSTRACT

Luminescent Ln3+ -doped nanoparticles (NPs) functionalised with the desired organic ligand molecules for haemocompatibility studies were obtained in a one-pot synthesis. Chelated aromatic organic ligands such as isophthalic acid, terephthalic acid, ibuprofen, aspirin, 1,2,4,5-benzenetetracarboxylic acid, 2,6-pyridine dicarboxylic acid and adenosine were applied for surface functionalisation. The modification of the nanoparticles is based on the donor-acceptor character of the ligand-nanoparticle system, which is an alternative to covalent functionalisation by peptide bonding as presented in our recent report. The aromatic groups of selected ligands absorb UV light and transfer their excited-state energy to the dopant Eu3+ ions in LaF3 and SrF2 NPs. Herein, we discuss the structural and spectroscopic characterisation of the NPs and the results of haemocompatibility studies. Flow cytometry analysis of the nanoparticles' membrane-binding is also presented.


Subject(s)
Erythrocytes/drug effects , Europium/pharmacology , Fluorides/pharmacology , Lanthanum/pharmacology , Nanoparticles/chemistry , Strontium/pharmacology , Dose-Response Relationship, Drug , Europium/chemistry , Fluorides/chemistry , Humans , Lanthanum/chemistry , Ligands , Molecular Structure , Strontium/chemistry , Structure-Activity Relationship
4.
ChemMedChem ; 15(15): 1490-1496, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32510839

ABSTRACT

Luminescent lanthanide fluoride core-shell (LaF3 :Tb3+ ,Ce3+ @SiO2 -NH2 ) nanoparticles, with acetylsalicylic acid (aspirin) coated on the surface have been obtained. The synthesized products, which combine the potential located in the silica shell with the luminescent activity of the core, were characterized in detail with the use of luminescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) methods. The in vitro effects of the modified luminescent nanoparticles on human red blood cell (RBC) membrane permeability, RBC shape, and sedimentation rate were investigated to assess the hemocompatibility of the obtained compounds. This study demonstrates that LaF3 : Tb3+ 5 %, Ce3+ 10 %@SiO2 -NH2 nanoparticles with acetylsalicylic acid (aspirin) coated on the surface are very good precursors for multifunctional drug-delivery systems or bio-imaging probes that can be used safely in potential biomedical applications.


Subject(s)
Aspirin/pharmacology , Biocompatible Materials/pharmacology , Fluorides/pharmacology , Hemolysis/drug effects , Lanthanoid Series Elements/pharmacology , Nanoparticles/chemistry , Aspirin/chemistry , Biocompatible Materials/chemistry , Cell Membrane Permeability/drug effects , Dose-Response Relationship, Drug , Erythrocytes/drug effects , Fluorides/chemistry , Humans , Lanthanoid Series Elements/chemistry , Luminescence , Luminescent Measurements , Molecular Structure , Particle Size , Structure-Activity Relationship , Surface Properties
5.
Monatsh Chem ; 145(11): 1689-1696, 2014.
Article in English | MEDLINE | ID: mdl-26166889

ABSTRACT

ABSTRACT: As a result of systematic UV-Vis absorption spectroscopy studies in the U(VI) acetate system, the single component spectrum of [UO2CH3COO]+ with characteristic parameters was evaluated and applied in quantitative deconvolution of multicomponent spectra. Free acetate concentrations were obtained by the use of geochemical and probabilistic modelling codes. A total of 51 UV-Vis spectra were collected in a wide range of experimental conditions where coordination of U(VI) by acetate ion was indicated by characteristic variations in the spectra structure as compared to UO22+. Using chemometric data analysis, the resulting factor structure was evaluated to obtain a subset of 14 spectra holding only one coordinated species next to UO22+(aq). The molar absorption coefficient for the U(VI) monoaceto species was estimated as ε418 = 17.8 ± 1 dm3 mol-1 cm-1. Spectral deconvolution was used to obtain an estimate of the species concentrations which allowed to calculate for each sample the free acetate concentration, the total U(VI) amount and, eventually, to estimate the formation quotient lg ß11 = 2.8 ± 0.3 of UO2(CH3COO)+.

SELECTION OF CITATIONS
SEARCH DETAIL
...