Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ticks Tick Borne Dis ; 15(1): 102272, 2024 01.
Article in English | MEDLINE | ID: mdl-37890206

ABSTRACT

In Central and Eastern Europe, wolf populations have been increasing over the last two decades, recolonizing areas from which the species had been previously exterminated. As wolves are still recovering after years of persecution by humans, recognizing pathogens infecting this species, including tick-borne infections, is crucial for its conservation. On the other hand the high mobility of wolves and their frequent contacts with humans, dogs, and other domestic species make them a potentially important zoonotic reservoir. In this paper, we used molecular methods to determine the prevalence of tick-borne pathogens in the following genera: Anaplasma, Babesia, Bartonella, Borrelia, and Rickettsia in 50 free-ranging wolves from Poland. We detected Babesia canis in the blood of nine individuals (prevalence 9/50=18 %). The obtained sequence showed the highest similarity to B. canis isolated from dogs and ticks, and all infected individuals originated from regions endemic to the ornate tick, Dermacentor reticulatus. Anaplasma phagocytophilum was found in tissue from one individual (1/50=2 %), and the sequence was assigned to the zoonotic ecotype I.


Subject(s)
Babesia , Rickettsia , Tick-Borne Diseases , Ticks , Wolves , Humans , Animals , Dogs , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Poland/epidemiology
2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982544

ABSTRACT

Factor VII activating protease (FSAP) was first isolated from human plasma less than 30 years ago. Since then, many research groups have described the biological properties of this protease and its role in hemostasis and other processes in humans and other animals. With the progress of knowledge about the structure of FSAP, several of its relationships with other proteins or chemical compounds that may modulate its activity have been explained. These mutual axes are described in the present narrative review. The first part of our series of manuscripts on FSAP describes the structure of this protein and the processes leading to the enhancement and inhibition of its activities. The following parts, II and III, concern the role of FSAP in hemostasis and in the pathophysiology of human diseases, with particular emphasis on cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Factor VII , Animals , Humans , Factor VII/metabolism , Serine Endopeptidases/metabolism , Peptide Hydrolases , Hemostasis/physiology
3.
Adv Clin Exp Med ; 27(3): 367-378, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29533537

ABSTRACT

BACKGROUND: Niacinamide is a stable and water-soluble form of vitamin B3, a valuable and versatile cosmetic ingredient, which is well absorbed and tolerated by the skin. A large body of literature has reported on the antioxidant and cell repair properties of niacinamide. Therefore, it has been shown to be useful in the protection of the skin against ultraviolet B (UVB) radiation and free radicals. Despite numerous hypotheses on the mechanism of vitamin B3, its protective effects have not yet been fully elucidated. OBJECTIVES: The aim of the study was to determine the protective effects of niacinamide on CHO AA8 cell line against UVB radiation. We assessed the following factors: cell death, cell cycle phase distributions, reorganization of main cytoskeletal proteins, such as F-actin, vimentin and ß-tubulin, and also alterations at the ultrastructural level. MATERIAL AND METHODS: The material used for our research was Chinese hamster ovary cell line (CHO AA8). We used 4 research groups: 1) control cells; 2) cells treated with niacinamide; 3) cells exposed to UV radiation; and 4) cells co-incubated with niacinamide and next exposed to ultraviolet. The cell death and cell cycle were evaluated by a Tali' based-image cytometer. A fluorescence microscope was used to assess the reorganization of cytoskeletal proteins, whereas a transmission electron microscope enabled the evaluation of the alterations at the ultrastructural level of cells. RESULTS: We showed that UV-induced apoptosis and cell cycle distributions during treatment with niacinamide resulted in a non-statistical significance in cell survival and no significant changes in the morphology and cytoskeleton in comparison to the control group. In turn, a combination of both factors led to an increase in the population of live cells and a decreased level of apoptotic cells in comparison to UV-exposed cells. CONCLUSIONS: Our results confirmed the harmful effects of UV radiation on CHO AA8 cell line. Furthermore, niacinamide can protect cells against these factors, and the mechanism of action may be related to the stabilization of the cell cytoskeleton.


Subject(s)
CHO Cells/drug effects , Niacinamide/pharmacology , Protective Agents/pharmacology , Ultraviolet Rays , Vitamin B Complex/pharmacology , Animals , Cricetinae , Cricetulus , Cytoskeletal Proteins , Niacinamide/administration & dosage , Protective Agents/administration & dosage , Vitamin B Complex/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...